SciencesPo Computational Economics Spring 2019

Florian Oswald

April 15, 2019

1 Optimization 2: Algorithms and Constraints

Florian Oswald Sciences Po, 2019

1.1 Bracketing

- A derivative-free method for *univariate f*
- works only on **unimodal** *f*
- (Draw choosing initial points and where to move next)

1.2 The Golden Ratio or Bracketing Search for 1D problems

- A derivative-free method
- a Bracketing method
 - find the local minimum of f on [a, b]
 - select 2 interior points c, d such that a < c < d < b
 - * $f(c) \leq f(d) \implies$ min must lie in [a, d]. replace *b* with *d*, start again with [a, d]
 - * $f(c) > f(d) \implies$ min must lie in [c, b]. replace *a* with *c*, start again with [c, b]
 - how to choose *b*, *d* though?
 - we want the length of the interval to be independent of whether we replace upper or lower bound
 - we want to reuse the non-replaced point from the previous iteration.
 - these imply the golden rule:
 - new point $x_i = a + \alpha_i(b a)$, where $\alpha_1 = \frac{3 \sqrt{5}}{2}$, $\alpha_2 = \frac{\sqrt{5} 1}{2}$
 - α_2 is known as the *golden ratio*, well known for it's role in renaissance art.

In [1]: using Plots

```
using Optim
gr()
f(x) = exp(x) - x^4
minf(x) = -f(x)
brent = optimize(minf,0,2,Brent())
golden = optimize(minf,0,2,GoldenSection())
```

```
println("brent = $brent")
       println("golden = $golden")
       plot(f,0,2)
brent = Results of Optimization Algorithm
 * Algorithm: Brent's Method
 * Search Interval: [0.000000, 2.000000]
 * Minimizer: 8.310315e-01
 * Minimum: -1.818739e+00
 * Iterations: 12
 * Convergence: max(|x - x_upper|, |x - x_lower|) <= 2*(1.5e-08*|x|+2.2e-16): true
* Objective Function Calls: 13
golden = Results of Optimization Algorithm
 * Algorithm: Golden Section Search
 * Search Interval: [0.000000, 2.000000]
 * Minimizer: 8.310315e-01
 * Minimum: -1.818739e+00
* Iterations: 37
```

- * Convergence: max(|x x_upper|, |x x_lower|) <= 2*(1.5e-08*|x|+2.2e-16): true
- * Objective Function Calls: 38

Out[1]:

1.2.1 Bisection Methods

- Root finding: Roots.jl
- Root finding in multivariate functions: IntervalRootFinding.jl

```
In [80]: using Roots
         #ăfind the zeros of this function:
         f(x) = \exp(x) - x^{4}
         ## bracketing
         fzero(f, 8, 9) # 8.613169456441398
         fzero(f, -10, 0) # -0.8155534188089606
Out[80]: -0.8155534188089606
In [36]: using IntervalRootFinding, IntervalArithmetic
         -10..10
Out[36]: [-10, 10]
In [37]: X = IntervalBox(1..3, 2..4)
Out[37]: [1, 3] Œ [2, 4]
In [38]: a = @interval(0.1, 0.3)
         b = @interval(0.3, 0.6)
         a + b
Out[38]: [0.399999, 0.900001]
In [41]: rts = roots(x \rightarrow x^2 - 2, -10..10, IntervalRootFinding.Bisection)
Out[41]: 2-element Array{Root{Interval{Float64}},1}:
          Root([1.41377, 1.41439], :unknown)
          Root([-1.41471, -1.41407], :unknown)
```

1.3 Rosenbrock Banana and Optim.jl

• We can supply the objective function and - depending on the solution algorithm - the gradient and hessian as well.

```
In [4]: using Optim
    using OptimTestProblems
    for (name, prob) in MultivariateProblems.UnconstrainedProblems.examples
        println(name)
    end
```

Rosenbrock Quadratic Diagonal Hosaki Large Polynomial Penalty Function I Beale Extended Rosenbrock Polynomial Powell Exponential Paraboloid Diagonal Paraboloid Random Matrix Extended Powell Trigonometric Fletcher-Powell Parabola Himmelblau

In [5]: rosenbrock = MultivariateProblems.UnconstrainedProblems.examples["Rosenbrock"]

Out[5]: OptimTestProblems.MultivariateProblems.OptimizationProblem{Nothing,Nothing,Float64,Str

1.4 Comparison Methods

- We will now look at a first class of algorithms, which are very simple, but sometimes a good starting point.
- They just *compare* function values.
- *Grid Search* : Compute the objective function at $G = \{x_1, ..., x_N\}$ and pick the highest value of *f*.
 - This is very slow.
 - It requires large *N*.
 - But it's robust (will find global optimizer for large enough *N*)

```
In [44]: # grid search on rosenbrock
grid = collect(-1.0:0.1:3);
grid2D = [[i;j] for i in grid,j in grid];
val2D = map(rosenbrock.f,grid2D);
r = findmin(val2D);
println("grid search results in minimizer = $(grid2D[r[2]])")
```

grid search results in minimizer = [1.0, 1.0]

1.5 Local Descent Methods

- Applicable to multivariate problems
- We are searching for a *local model* that provides some guidance in a certain region of *f* over **where to go to next**.
- Gradient and Hessian are informative about this.

1.5.1 Local Descent Outline

All descent methods follow more or less this structure. At iteration *k*,

- 1. Check if candidate $\mathbf{x}^{(k)}$ satisfies stopping criterion:
 - if yes: stop
 - if no: continue
- 2. Get the local *descent direction* $\mathbf{d}^{(k)}$, using gradient, hessian, or both.
- 3. Set the *step size*, i.e. the length of the next step, α^k
- 4. Get the next candidate via

$$\mathbf{x}^{(k+1)} \leftarrow \alpha^k \mathbf{d}^{(k)}$$

1.5.2 The Line Search Strategy

- An algorithm from the line search class chooses a direction $\mathbf{d}^{(k)} \in \mathbb{R}^n$ and searches along that direction starting from the current iterate $x_k \in \mathbb{R}^n$ for a new iterate $x_{k+1} \in \mathbb{R}^n$ with a lower function value.
- After deciding on a direction $\mathbf{d}^{(k)}$, one needs to decide the *step length* α to travel by solving

$$\min_{\alpha>0} f(x_k + \alpha \mathbf{d}^{(k)})$$

- In practice, solving this exactly is too costly, so algos usually generate a sequence of trial values *α* and pick the one with the lowest *f*.
- In [46]: # https://github.com/JuliaNLSolvers/LineSearches.jl

using LineSearches

```
algo_hz = Optim.Newton(linesearch = HagerZhang())  # Both Optim.jl and IntervalRoot.
res_hz = Optim.optimize(rosenbrock.f, rosenbrock.g!, rosenbrock.h!, rosenbrock.initial
```

- Out[46]: Results of Optimization Algorithm
 - * Algorithm: Newton's Method
 - * Starting Point: [-1.2,1.0]
 - * Minimizer: [1.00000000000033,1.0000000000067]
 - * Minimum: 1.109336e-29
 - * Iterations: 23
 - * Convergence: true
 - * |x x'| 0.0e+00: false
 - |x x'| = 1.13e-08
 - * |f(x) f(x')| = 0.0e+00 |f(x)|: false |f(x) - f(x')| = 6.35e+13 |f(x)|
 - * |g(x)| 1.0e-08: true |g(x)| = 6.66e-15
 - * Stopped by an increasing objective: false
 - * Reached Maximum Number of Iterations: false
 - * Objective Calls: 71
 - * Gradient Calls: 71
 - * Hessian Calls: 23

1.5.3 The Trust Region Strategy

- First choose max step size, then the direction
- Finds the next step $\hat{\mathbf{x}}^{(k+1)}$ by minimizing a model of \hat{f} over a *trust region*, centered on $\mathbf{x}^{(k)}$

– 2nd order Tayloer approx of *f* is common.

- Radius δ of trust region is changed based on how well \hat{f} fits f in trust region.
- Get **x**' via

$$\begin{array}{ll} \min_{\mathbf{x}'} & \hat{f}(\mathbf{x}') \\ \text{subject to} & \|\mathbf{x} - \mathbf{x}' \leq \delta\| \end{array}$$

In [47]: # Optim.jl has a TrustRegion for Newton (see below for Newton's Method)

```
NewtonTrustRegion(; initial_delta = 1.0, # The starting trust region radius
```

```
delta_hat = 100.0, # The largest allowable trust region radius
```

```
eta = 0.1, #When rho is at least eta, accept the step.
```

```
rho_lower = 0.25, # When rho is less than rho_lower, shrink the t
rho_upper = 0.75) # When rho is greater than rho_upper, grow the
```

```
res = Optim.optimize(rosenbrock.f, rosenbrock.g!, rosenbrock.h!, rosenbrock.initial_x
```

Out[47]: Results of Optimization Algorithm

- * Algorithm: Newton's Method (Trust Region)
- * Starting Point: [-1.2,1.0]
- * Minimizer: [0.9999999994405535,0.9999999988644926]
- * Minimum: 3.405841e-19
- * Iterations: 25
- * Convergence: true
 - * |x x'| 0.0e+00: false
 - |x x'| = 8.84e-06
 - * |f(x) f(x')| 0.0e+00 |f(x)|: false
 |f(x) f(x')| = 1.87e+08 |f(x)|
 - * |g(x)| 1.0e-08: true |g(x)| = 5.53e-09
 - * Stopped by an increasing objective: false
 - * Reached Maximum Number of Iterations: false
- * Objective Calls: 26
- * Gradient Calls: 26
- * Hessian Calls: 22

1.5.4 Stopping criteria

- 1. maximum number of iterations reached
- 2. absolute improvement $|f(x) f(x')| \le \epsilon$
- 3. relative improvement $|f(x) f(x')| / |f(x)| \le \epsilon$
- 4. Gradient close to zero $|g(x)| \approx 0$

1.5.5 Gradient Descent

Here we define

$$\mathbf{g}^{(k)} = \nabla f(\mathbf{d}^{(k)})$$

And our descent becomes

$$\mathbf{d}^{(k)} = -\nabla \frac{\mathbf{g}^{(k)}}{\|\mathbf{g}^{(k)}\|}$$

• Minimizing wrt step size results in a jagged path (each direction is orthogonal to previous direction!)

 $\alpha^{(k)} = \arg\min\alpha f(\mathbf{x}^{(k)} + \alpha \mathbf{d}^{(k)})$

• Conjugate Gradient avoids this issue.

```
Out[48]: GradientDescent{InitialPrevious{Float64},HagerZhang{Float64,Base.RefValue{Bool}},Noth
           alpha: Float64 1.0
           alphamin: Float64 0.0
           alphamax: Float64 Inf
         , HagerZhang{Float64,Base.RefValue{Bool}}
           delta: Float64 0.1
           sigma: Float64 0.9
           alphamax: Float64 Inf
           rho: Float64 5.0
           epsilon: Float64 1.0e-6
           gamma: Float64 0.66
           linesearchmax: Int64 50
           psi3: Float64 0.1
           display: Int64 0
           mayterminate: Base.RefValue{Bool}
         , nothing, getfield(Main, Symbol("##49#50"))(), Flat())
In [49]: # there is a dedicated LineSearch package: https://github.com/JuliaNLSolvers/LineSear
         GD = optimize(rosenbrock.f, rosenbrock.g!,[0.0, 0.0],GradientDescent())
         GD1 = optimize(rosenbrock.f, rosenbrock.g!,[0.0, 0.0],GradientDescent(),Optim.Options
         GD2 = optimize(rosenbrock.f, rosenbrock.g!,[0.0, 0.0],GradientDescent(),Optim.Options
         println("gradient descent = $GD")
         println("\n")
         println("gradient descent 2 = $GD1")
         println("\n")
         println("gradient descent 3 = $GD2")
```

gradient descent = Results of Optimization Algorithm

- * Algorithm: Gradient Descent
- * Starting Point: [0.0,0.0]
- * Minimizer: [0.9356732500354086,0.875073922357589]
- * Minimum: 4.154782e-03
- * Iterations: 1000

- * Convergence: false
 - * |x x'| 0.0e+00: false |x - x'| = 1.82e-04
 - * |f(x) f(x')| 0.0e+00 |f(x)|: false
 |f(x) f(x')| = 1.97e-03 |f(x)|
 - * |g(x)| 1.0e-08: false |g(x)| = 8.21e-02
 - * Stopped by an increasing objective: false
 - * Reached Maximum Number of Iterations: true
- * Objective Calls: 2532
- * Gradient Calls: 2532

gradient descent 2 = Results of Optimization Algorithm

- * Algorithm: Gradient Descent
- * Starting Point: [0.0,0.0]
- * Minimizer: [0.9978398797724763,0.9956717950747302]
- * Minimum: 4.682073e-06
- * Iterations: 5000
- * Convergence: false
 - * |x x'| 0.0e+00: false |x - x'| = 5.08e-06
 - * |f(x) f(x')| 0.0e+00 |f(x)|: false
 |f(x) f(x')| = 1.62e-03 |f(x)|
 - * |g(x)| 1.0e-08: false |g(x)| = 2.53e-03
 - * Stopped by an increasing objective: false
 - * Reached Maximum Number of Iterations: true
- * Objective Calls: 12532
- * Gradient Calls: 12532

gradient descent 3 = Results of Optimization Algorithm

- * Algorithm: Gradient Descent
- * Starting Point: [0.0,0.0]
- * Minimizer: [0.9999999914304203,0.9999999828109042]
- * Minimum: 7.368706e-17
- * Iterations: 20458
- * Convergence: true
 - * |x x'| 0.0e+00: false |x - x'| = 2.00e-11
 - * |f(x) f(x')| = 0.0e+00 |f(x)|: false
 - |f(x) f(x')| = 1.61e-03 |f(x)|
 - * |g(x)| 1.0e-08: true
 |g(x)| = 9.99e-09
 - * Stopped by an increasing objective: false
 - * Reached Maximum Number of Iterations: false
- * Objective Calls: 51177

* Gradient Calls: 51177

1.6 Second Order Methods

1.6.1 Newton's Method

• We start with a 2nd order Taylor approx over x at step *k*:

$$q(x) = f(x^{(k)}) + (x - x^{(k)})f'(x^{(k)}) + \frac{(x - x^{(k)})^2}{2}f''(x^{(k)})$$

• We set find it's root and rearrange to find the next step k + 1:

$$\frac{\partial q(x)}{\partial x} = f'(x^{(k)}) + (x - x^{(k)})f''(x^{(k)}) = 0$$
$$x^{(k+1)} = x^{(k)} - \frac{f'(x^{(k)})}{f''(x^{(k)})}$$

- The same argument works for multidimensional functions by using Hessian and Gradient
- We would get a descent **d**^{*k*} by setting:

$$\mathbf{d}^k = -\frac{\mathbf{g}^k}{\mathbf{H}^k}$$

- There are several options to avoid (often costly) computation of the Hessian H:
- 1. Quasi-Newton updates H starting from identity matrix
- 2. Broyden-Fletcher-Goldfarb-Shanno (BFGS) does better with approx linesearch
- 3. L-BFGS is the limited memory version for large problems

In [6]: optimize(rosenbrock.f, rosenbrock.g!, rosenbrock.h!, [0.0, 0.0], Optim.Newton(),Optim.

Iter	Function value	Gradient norm
0	1.000000e+00	2.000000e+00
1	8.431140e-01	1.588830e+00
2	6.776980e-01	3.453340e+00
3	4.954645e-01	4.862093e+00
4	3.041921e-01	2.590086e+00
5	1.991512e-01	3.780900e+00
6	9.531907e-02	1.299090e+00
7	5.657827e-02	2.445401e+00
8	2.257807e-02	1.839332e+00
9	6.626125e-03	1.314236e+00
10	8.689753e-04	5.438279e-01
11	4.951399e-06	7.814556e-02
12	9.065070e-10	6.017046e-04
13	9.337686e-18	1.059738e-07
14	3.081488e-31	1.110223e-15

```
Out[6]: Results of Optimization Algorithm
```

- * Algorithm: Newton's Method
- * Starting Point: [0.0,0.0]
- * Minimum: 3.081488e-31
- * Iterations: 14
- * Convergence: true
 - * |x x'| 0.0e+00: false
 - |x x'| = 3.06e-09
 - * |f(x) f(x')| 0.0e+00 |f(x)|: false
 |f(x) f(x')| = 3.03e+13 |f(x)|
 - * |g(x)| 1.0e-08: true
 - |g(x)| = 1.11e-15
 - * Stopped by an increasing objective: false
 - * Reached Maximum Number of Iterations: false
- * Objective Calls: 44
- * Gradient Calls: 44
- * Hessian Calls: 14

In [7]: @show optimize(rosenbrock.f, rosenbrock.g!, rosenbrock.h!, [-1.0, 3.0], BFGS());

optimize(rosenbrock.f, rosenbrock.g!, rosenbrock.h!, [-1.0, 3.0], BFGS()) = Results of Optimize

- * Algorithm: BFGS
- * Starting Point: [-1.0,3.0]
- * Minimizer: [0.999999999999956,0.999999999999987]
- * Minimum: 1.707144e-27
- * Iterations: 39
- * Convergence: true
 - * |x x'| 0.0e+00: false
 - |x x'| = 1.54e-08
 - * |f(x) f(x')| = 0.0e+00 |f(x)|: false
 - |f(x) f(x')| = 3.55e+10 |f(x)|
 - * |g(x)| 1.0e-08: true |g(x)| = 1.63e-12
 - * Stopped by an increasing objective: false

 - * Reached Maximum Number of Iterations: false
- * Objective Calls: 137
- * Gradient Calls: 137

In [8]: # low memory BFGS

@show optimize(rosenbrock.f, rosenbrock.g!, rosenbrock.h!, [0.0, 0.0], LBFGS());

optimize(rosenbrock.f, rosenbrock.g!, rosenbrock.h!, [0.0, 0.0], LBFGS()) = Results of Optimize

- * Algorithm: L-BFGS
- * Starting Point: [0.0,0.0]
- * Minimizer: [0.999999999999928,0.99999999999998559]
- * Minimum: 5.191703e-27
- * Iterations: 24

- * Convergence: true
 - * |x x'| 0.0e+00: false |x - x'| = 4.58e-11
 - * |f(x) f(x')| 0.0e+00 |f(x)|: false
 - |f(x) f(x')| = 8.50e+07 |f(x)|
 - * |g(x)| 1.0e-08: true
 - |g(x)| = 1.44e-13
 - * Stopped by an increasing objective: false
 - * Reached Maximum Number of Iterations: false
- * Objective Calls: 67
- * Gradient Calls: 67

Direct Methods

- No derivative information is used *derivative free*
- If it's very hard / impossible to provide gradient information, this is our only chance.
- Direct methods use other criteria than the gradient to inform the next step (and ulimtately convergence).

1.6.2 Cyclic Coordinate Descent – Taxicab search

- We do a line search over each dimension, one after the other
- *taxicab* because the path looks like a NYC taxi changing direction at each block.
- given $\mathbf{x}^{(1)}$, we proceed

$$\mathbf{x}^{(2)} = \arg\min_{x_1} f(x_1, x_2^{(1)}, \dots, x_n^{(1)})$$
$$\mathbf{x}^{(3)} = \arg\min_{x_2} f(x_1^{(2)}, x_2, x_3^{(2)}, \dots, x_n^{(2)})$$

• unfortunately this can easily get stuck because it can only move in 2 directions.

Out[9]: cyclic_coordinate_descent (generic function with 1 method)

1.6.3 General Pattern Search

- We search according to an arbitrary *pattern P* of candidate points, anchored at current guess x.
- With step size α and set \mathcal{D} of directions

$$\mathcal{P} = \mathbf{x} + \alpha \mathbf{d}$$
 for $\mathbf{d} \in \mathcal{D}$

- Convergence is guaranteed under conditions:
 - \mathcal{D} must be a positive spanning set: at least one $\mathbf{d} \in \mathcal{D}$ has a non-zero gradient.

```
In [10]: function generalized_pattern_search(f, x, , D, , =0.5)
             y, n = f(x), length(x)
             evals = 0
             while >
                 improved = false
                 for (i,d) in enumerate(D)
                     x = x + *d
                     y = f(x)
                     evals += 1
                     if y < y
                         x, y, improved = x, y, true
                         D = pushfirst!(deleteat!(D, i), d)
                         break
                     end
                 end
                 if !improved
                      *=
                 end
             end
             println("$evals evaluations")
             return x
```

```
end
```

Out[10]: generalized_pattern_search (generic function with 2 methods)

```
In [11]: D = [[1,0],[0,1],[-1,-0.5]]
D = [[1,0],[0,1]]
y=generalized_pattern_search(rosenbrock.f,zeros(2),0.8,D,1e-6 )
```

11923 evaluations

```
Out[11]: 2-element Array{Float64,1}:
0.9996734619140493
0.9993469238280956
```

1.7 Bracketing for Multidimensional Problems: Nelder-Mead

- The Goal here is to find the simplex containing the local minimizer *x*^{*}
- In the case where f is n-D, this simplex has n + 1 vertices
- In the case where f is 2-D, this simplex has 2 + 1 vertices, i.e. it's a triangle.
- The method proceeds by evaluating the function at all n + 1 vertices, and by replacing the worst function value with a new guess.
- this can be achieved by a sequence of moves:
 - reflect
 - expand
 - contract
 - shrink movements.

- this is a very popular method. The matlab functions fmincon and fminsearch implements it.
- When it works, it works quite fast.
- No derivatives required.

```
Out[12]: 2-element Array{Float64,1}:
0.9999634355313174
0.9999315506115275
```

• But.

1.8 Bracketing for Multidimensional Problems: Comment on Nelder-Mead

Lagarias et al. (SIOPT, 1999): At present there is no function in any dimension greater than one, for which the original Nelder-Mead algorithm has been proved to converge to a minimizer.

Given all the known inefficiencies and failures of the Nelder-Mead algorithm [...], one might wonder why it is used at all, let alone why it is so extraordinarily popular.

1.9 things to read up on

- Divided Rectangles (DIRECT)
- simulated annealing and other stochastic gradient methods

1.10 Stochastic Optimization Methods

- Gradient based methods like steepest descent may be susceptible to getting stuck at local minima.
- Randomly shocking the value of the descent direction may be a solution to this.
- · For example, one could modify our gradient descent from before to become

$$\mathbf{x}^{(k+1)} \longleftarrow \mathbf{x}^{(k)} + \alpha^k \mathbf{g}^{(k)} + \mathbf{u}^{(k)}$$

- where $''^{(k)} \sim N(0, \sigma_k^2)$, decreasing with *k*.
- This stochastic gradient descent is often used when training neural networks.

1.10.1 Simulated Annealing

- We specify a *temperature* that controls the degree of randomness.
- At first the temperature is high, letting the search jump around widely. This is to escape local minima.
- The temperature is gradually decreased, reducing the step sizes. This is to find the local optimimum in the *best* region.
- At every iteration *k*, we accept new point **x**' with

$$\Pr(\operatorname{accept} \mathbf{x}') = \begin{cases} 1 & \text{if } \Delta y \leq 0\\ \min(e^{\Delta y/t}, 1) & \text{if } \Delta y > 0 \end{cases}$$

- here $\Delta y = f(\mathbf{x}') f(\mathbf{x})$, and *t* is the *temperature*.
- $Pr(accept \mathbf{x}')$ is called the **Metropolis Criterion**, building block of *Accept/Reject* algorithms.

```
In [15]: #ăf: function
```

```
# x: initial point
# T: transition distribution
#ăt: temp schedule, k_max: max iterations
function simulated_annealing(f, x, T, t, k_max)
    y = f(x)
    ytrace = zeros(typeof(y),k_max)
```

```
x_best, y_best = x, y
for k in 1 : k_max
        x = x + rand(T)
        y = f(x)
        y = y - y
        if y 0 || rand() < exp(-y/t(k))
            x, y = x, y
        end
        if y < y_best
            x_best, y_best = x, y
        end
        ytrace[k] = y_best
end
return x_best,ytrace
end</pre>
```

```
ena
```

```
Out[15]: simulated_annealing (generic function with 1 method)
```

```
Out[1]:
```



```
In [16]: p = Any[]
    using Distributions
    gr()
    niters = 1000
    temps = (1,10,25)
    push!(p,[plot(x->i/x,1:1000,title = "tmp $i",lw=2,ylims = (0,1),leg = false) for i in
    for sig in (1,5,25), t1 in (1,10,25)
        y = simulated_annealing(ackley,[15,15],MvNormal(2,sig),x->t1/x,1000)[2][:]
        push!(p,plot(y,title = "sig = $sig",leg=false,lw=1.5,color="red",ylims = (0,20)))
    end
    plot(p...,layout = (4,3))
```


2 Constraints

Recall our core optimization problem:

$$\min_{x\in\mathbb{R}^n}f(x) \text{ s.t. } x\in\mathcal{X}$$

- Up to now, the feasible set was $\mathcal{X} \in \mathbb{R}^n$.
- In **constrained problems** X is a subset thereof.
- We already encountered *box constraints*, e.g. $x \in [a, b]$.
- Sometimes the contrained solution coincides with the unconstrained one, sometimes it does not.
- There are *equality constraints* and *inequality constraints*.

2.1 Lagrange Multipliers

• Used to optimize a function subject to equality constraints.

$$\min_{x} f(x)$$
subject to $h(x) = 0$

where both *f* and *h* have continuous partial derivatives.

• We look for contour lines of *f* that are aligned to contours of h(x) = 0.

In other words, we want to find the best *x* s.t. h(x) = 0 and we have

$$\nabla f(x) = \lambda \nabla h(x)$$

for some *Lagrange Mutliplier* λ * Notice that we need the scalar λ because the magnitudes of the gradients may be different. * We therefore form the the **Lagrangian**:

$$\mathcal{L}(x,\lambda) = f(x) - \lambda h(x)$$

2.1.1 Example

Suppose we have

$$\min_{x} - \exp\left(-\left(x_1x_2 - \frac{3}{2}\right)^2 - \left(x_2 - \frac{3}{2}\right)^2\right)$$

subject to $x_1 - x_2^2 = 0$

We form the Lagrangiagn:

$$\mathcal{L}(x_1, x_2, \lambda) = -\exp\left(-\left(x_1 x_2 - \frac{3}{2}\right)^2 - \left(x_2 - \frac{3}{2}\right)^2\right) - \lambda(x_1 - x_2^2)$$

Then we compute the gradient wrt to x_1, x_2, λ , set to zero and solve.

In [11]: gr()
 f(x1,x2) = -exp.(-(x1.*x2 - 3/2).^2 - (x2-3/2).^2)
 c(x1) = sqrt(x1)
 x=0:0.01:3.5
 contour(x,x,(x,y)->f(x,y),lw=1.5,levels=[collect(0:-0.1:-0.85)...,-0.887,-0.95,-1])
 plot!(c,0.01,3.5,label="",lw=2,color=:black)
 scatter!([1.358],[1.165],markersize=5,markercolor=:red,label="Constr. Optimum")

• If we had multiple constraints (*l*), we'd just add them up to get

$$\mathcal{L}(\mathbf{x},\check{}) = f(\mathbf{x}) - \sum_{i=1}^{l} \lambda_i h_i(\mathbf{x})$$

2.2 Inequality Constraints

Suppose now we had

$$\min_{\mathbf{x}} f(\mathbf{x})$$

subject to
$$g(\mathbf{x}) \leq 0$$

which, if the solution lies right on the constraint boundary, means that

$$\nabla f - \mu \nabla g = 0$$

for some scalar μ - as before.

- In this case, we say the **constraint is active**.
- In the opposite case, i.e. the solution lies **inside** the contrained region, we way the contraint is **inactive**.
- In that case, we are back to an *unconstrained* problem, look for $\nabla f = 0$, and set $\mu = 0$.

```
In [12]: #ăthe blue area shows the FEASIBLE SET
```

contour(x,x,(x,y)->f(x,y),lw=1.5,levels=[collect(0:-0.1:-0.85)...,-0.887,-0.95,-1])
plot!(c,0.01,3.5,label="",lw=2,color=:black,fill=(0,0.5,:blue))
scatter!([1.358],[1.165],markersize=5,markercolor=:red,label="Constr. Optimum")

Out[12]:

Out[13]:

2.3 Infinity Step

• We could do an **infinite step** to avoid *infeasible points*:

$$f_{\infty\text{-step}} = \begin{cases} f(\mathbf{x}) & \text{if } g(\mathbf{x}) \le 0\\ \infty & \text{else.} \end{cases}$$
$$= f(\mathbf{x}) + \infty(g(\mathbf{x} > 0))$$

- Unfortunately, this is discontinous and non-differentiable, i.e. hard to handle for algorithms.
- Instead, we use a *linear penalty* $\mu g(\mathbf{x})$ on the objective if the constraint is violated.
- The penalty provides a lower bound to ∞ :

$$\mathcal{L}(\mathbf{x},\mu) = f(\mathbf{x}) + \mu g(\mathbf{x})$$

• We can get back the infinite step by maximizing the penalty:

$$f_{\infty\text{-step}} = \max_{\mu \ge 0} \mathcal{L}(\mathbf{x}, \mu)$$

• Every infeasible **x** returns ∞ , all others return $f(\mathbf{x})$

2.4 Kuhn-Karush-Tucker (KKT)

• Our problem thus becomes

$$\min_{\mathbf{x}} \max_{\mu \ge 0} \mathcal{L}(\mathbf{x}, \mu)$$

- This is called the **primal problem**. Optimizing this requires:
- 1. $g(\mathbf{x}^*) \leq 0$. Point is feasible.
- 2. $\mu \ge 0$. Penalty goes into the right direction. *Dual feasibility*.
- 3. $\mu g(\mathbf{x}^*) = 0$. Feasible point on the boundary has $g(\mathbf{x}) = 0$, otherwise $g(\mathbf{x}) < 0$ and $\mu = 0$.
- 4. $\nabla f(\mathbf{x}^*) \mu \nabla g(\mathbf{x}^*) = 0$. With an active constraint, we want parallel contours of objective and constraint. When inactive, our optimum just has $\nabla f(\mathbf{x}^*) = 0$, which means $\mu = 0$.

The preceding four conditions are called the Kuhn-Karush-Tucker (KKT) conditions. In the above order, and in general terms, they are:

- 1. Feasibility
- 2. Dual Feasibility
- 3. Complementary Slackness
- 4. Stationarity.

The KKT conditions are the FONCs for problems with smooth constraints.

2.5 Duality

We can combine equality and inequality constraints:

$$\mathcal{L}(\mathbf{x},\check{},\bar{}) = f(\mathbf{x}) + \sum_{i} \lambda_{i} h_{i}(\mathbf{x}) + \sum_{j} \mu_{j} g_{j}(\mathbf{x})$$

where, notice, we reverted the sign of λ since this is unrestricted.

• The Primal problem is identical to the original problem and just as difficult to solve:

$$\min_{\mathbf{x}} \max_{\bar{} \geq 0, \check{}} \mathcal{L}(\mathbf{x}, \bar{}, \check{})$$

• The Dual problem reverses min and max:

$$\max_{\bar{z} \geq 0, \tilde{z}} \min_{\mathbf{x}} \mathcal{L}(\mathbf{x}, \bar{z}, \tilde{z})$$

2.5.1 Dual Values

• The *max-min-inequality* states that for any function f(a, b)

$$\max_{\mathbf{a}} \min_{\mathbf{b}} f(\mathbf{a}, \mathbf{b}) \le \min_{\mathbf{b}} \max_{\mathbf{a}} f(\mathbf{a}, \mathbf{b})$$

- Hence, the solution to the dual is a lower bound to the solution of the primal problem.
- The solution to the *dual function*, min_x L(x, -, ~) is the min of a collection of linear functions, and thus always concave.
- It is easy to optimize this.
- In general, solving the dual is easy whenever minimizing \mathcal{L} wrt x is easy.

Penalty Methods

- We can convert the constrained problem back to unconstrained by adding penalty terms for constraint violoations.
- A simple method could just count the number of violations:

$$p_{\text{count}}(\mathbf{x}) = \sum_{i} (h_i(\mathbf{x}) \neq 0) + \sum_{j} (g_j(\mathbf{x} > 0))$$

• and add this to the objective in an *unconstrained* problem with penalty $\rho > 0$

$$\min_{\mathbf{x}} f(\mathbf{x}) + \rho p_{\text{count}}(\mathbf{x})$$

- One can choose the penalty function: for example, a quadratic penaly will produce a smooth objective function
- Notice that *ρ* needs to become very large sometimes here.

Augmented Lagrange Method

• This is very similar, but specific to equality constraints.

Interior Point Method

- Also called *barrier method*.
- These methods make sure that the search point remains always feasible.
- As one approaches the constraint boundary, the barrier function goes to infinity. Properties:
- 1. $p_{\text{barrier}}(\mathbf{x})$ is continuous
- 2. $p_{\text{barrier}}(\mathbf{x})$ is non negative
- 3. $p_{\text{barrier}}(\mathbf{x})$ goes to infinitely as one approaches the constraint boundary

2.5.2 Barriers

• Inverse Barrier

$$p_{\text{barrier}}(\mathbf{x}) = -\sum_{i} \frac{1}{g_i(\mathbf{x})}$$

• Log Barrier

$$p_{\text{barrier}}(\mathbf{x}) = -\sum_{i} \begin{cases} \log(-g_{i}(\mathbf{x})) & \text{if } g_{i}(\mathbf{x}) \geq -1 \\ 0 & \text{else.} \end{cases}$$

The approach is as before, one transforms the problem to an unconstrained one and increases
 ρ until convergence:

$$\min_{\mathbf{x}} f(\mathbf{x}) + \frac{1}{\rho} p_{\text{barrier}}(\mathbf{x})$$

2.5.3 Examples

$$\min_{x \in \mathbb{R}^2} \sqrt{x_2} \text{ subject to } \qquad \begin{aligned} x_2 \ge 0\\ x_2 \ge (a_1 x_1 + b_1)^3\\ x_2 \ge (a_2 x_1 + b_2)^3 \end{aligned}$$

2.6 Constrained Optimisation with NLopt.jl

- We need to specify one function for each objective and constraint.
- Both of those functions need to compute the function value (i.e. objective or constraint) *and* it's respective gradient.
- NLopt expects contraints always to be formulated in the format

$$g(x) \leq 0$$

where g is your constraint function

- The constraint function is formulated for each constraint at *x*. it returns a number (the value of the constraint at *x*), and it fills out the gradient vector, which is the partial derivative of the current constraint wrt *x*.
- There is also the option to have vector valued constraints, see the documentation.
- We set this up as follows:

```
In [9]: using NLopt
```

```
count = 0 # keep track of # function evaluations
function myfunc(x::Vector, grad::Vector)
    if length(grad) > 0
        grad[1] = 0
```

```
grad[2] = 0.5/sqrt(x[2])
            end
            global count
            count::Int += 1
            println("f_$count($x)")
            sqrt(x[2])
        end
        function myconstraint(x::Vector, grad::Vector, a, b)
            if length(grad) > 0
                grad[1] = 3a * (a*x[1] + b)^2
                grad[2] = -1
            end
            (a*x[1] + b)^3 - x[2]
        end
        opt = Opt(:LD_MMA, 2)
        lower_bounds!(opt, [-Inf, 0.])
        xtol_rel!(opt,1e-4)
        min_objective!(opt, myfunc)
        inequality_constraint!(opt, (x,g) -> myconstraint(x,g,2,0), 1e-8)
        inequality_constraint!(opt, (x,g) -> myconstraint(x,g,-1,1), 1e-8)
        (minfunc,minx,ret) = NLopt.optimize(opt, [1.234, 5.678])
        println("got $minfunc at $minx after $count iterations (returned $ret)")
f_1([1.234, 5.678])
f_2([0.878739, 5.55137])
f_3([0.826216, 5.0439])
f_4([0.473944, 4.07677])
f_5([0.353898, 3.03085])
f_6([0.333873, 1.97179])
f_7([0.333334, 1.04509])
f_8([0.333334, 0.469503])
f_9([0.333333, 0.305792])
f_10([0.333333, 0.296322])
f_11([0.333333, 0.296296])
got 0.5443310477213124 at [0.333333, 0.296296] after 11 iterations (returned XTOL_REACHED)
```

WARNING: using NLopt.optimize! in module Main conflicts with an existing identifier.

2.7 NLopt: Rosenbrock

• Let's tackle the rosenbrock example again.

• To make it more interesting, let's add an inequality constraint.

$$\min_{x \in \mathbb{R}^2} (1 - x_1)^2 + 100(x_2 - x_1^2)^2 \text{ subject to } 0.8 - x_1^2 - x_2^2 \ge 0$$

• in NLopt format, the constraint is $x_1 + x_2 - 0.8 \le 0$

```
In [9]: function rosenbrockf(x::Vector,grad::Vector)
             if length(grad) > 0
                      grad[1] = -2.0 * (1.0 - x[1]) - 400.0 * (x[2] - x[1]^2) * x[1]
                      grad[2] = 200.0 * (x[2] - x[1]^2)
             end
             return (1.0 - x[1])<sup>2</sup> + 100.0 * (x[2] - x[1]<sup>2</sup>)<sup>2</sup>
         end
        function r_constraint(x::Vector, grad::Vector)
             if length(grad) > 0
                 grad[1] = 2*x[1]
                 grad[2] = 2 * x[2]
                 end
                 return x[1]<sup>2</sup> + x[2]<sup>2</sup> - 0.8
         end
        opt = Opt(:LD_MMA, 2)
        lower_bounds!(opt, [-5, -5.0])
        min_objective!(opt,(x,g) -> rosenbrockf(x,g))
        inequality_constraint!(opt, (x,g) -> r_constraint(x,g))
        ftol_rel!(opt,1e-9)
        NLopt.optimize(opt, [-1.0,0.0])
Out [9]: (0.07588358473630112, [0.724702, 0.524221], :FTOL_REACHED)
```

2.8 JuMP.jl

- Introduce JuMP.jl
- JuMP is a mathematical programming interface for Julia. It is like AMPL, but for free and with a decent programming language.
- The main highlights are:
 - It uses automatic differentiation to compute derivatives from your expression.
 - It supplies this information, as well as the sparsity structure of the Hessian to your preferred solver.
 - It decouples your problem completely from the type of solver you are using. This is great, since you don't have to worry about different solvers having different interfaces.
 - In order to achieve this, JuMP uses MathProgBase.jl, which converts your problem formulation into a standard representation of an optimization problem.
- Let's look at the readme
- The technical citation is Lubin et al [?]

2.9 JuMP: Quick start guide

- this is form the quick start guide
- please check the docs, they are excellent.

2.9.1 Step 1: create a model

- A model collects variables, objective function and constraints.
- it defines a specific solver to be used.
- JuMP makes it very easy to swap out solver backends This is very valuable!

```
In [18]: using JuMP
```

```
using GLPK
model = Model(with_optimizer(GLPK.Optimizer))
@variable(model, 0 <= x <= 2)
@variable(model, 0 <= y <= 30)
# next, we set an objective function
@objective(model, Max, 5x + 3 * y)
# maybe add a constraint called "con":
@constraint(model, con, 1x + 5y <= 3);</pre>
```

- At this stage JuMP has a mathematical representation of our model internalized
- The MathProgBase machinery knows now exactly how to translate that to different solver interfaces
- For us the only thing left: hit the button!

```
In [15]: JuMP.optimize!(model)
```

- The last call gets the *dual value associated with a constraint*
- Economists most of the time call that the *value of the lagrange multiplier*.

For linear programs, a feasible dual on a >= constraint is nonnegative and a feasible dual on a <= constraint is nonpositive

• This is different to some textbooks and has nothing to do with wether max or minimizing.

Out[71]: 0.6

2.10 JuMP handles...

- linear programming
- mixed-integer programming
- second-order conic programming
- semidefinite programming, and
- nonlinear programming

```
In [17]: # JuMP: nonlinear Rosenbrock Example
```

```
# Instead of hand-coding first and second derivatives, you only have to give `JuMP` e
# Here is an example.
```

```
using Ipopt
```

let

```
m = Model(with_optimizer(Ipopt.Optimizer))
@variable(m, x)
@variable(m, y)
@NLobjective(m, Min, (1-x)^2 + 100(y-x^2)^2)
JuMP.optimize!(m)
@show value(x)
@show value(y)
@show termination_status(m)
```

end

This is Ipopt version 3.12.10, running with linear solver mumps. NOTE: Other linear solvers might be more efficient (see Ipopt documentation).

Number of nonzeros in equality constraint Jacobian:	0
Number of nonzeros in inequality constraint Jacobian.:	0
Number of nonzeros in Lagrangian Hessian: 3	
Total number of variables: 2	
variables with only lower bounds:	0
variables with lower and upper bounds:	0
variables with only upper bounds:	0
Total number of equality constraints: 0	
Total number of inequality constraints: 0	
inequality constraints with only lower bounds:	0

inequality constraints with lower and upper bounds: 0 inequality constraints with only upper bounds: 0

iter	objective	inf_pr	inf_du	lg(mu)	d	lg(rg)	alpha_du	alpha_pr	ls
0	1.0000000e+00	0.00e+00	2.00e+00	-1.0	0.00e+00) –	0.00e+00	0.00e+00	0
1	9.5312500e-01	0.00e+00	1.25e+01	-1.0	1.00e+00) –	1.00e+00	2.50e-01f	3
2	4.8320569e-01	0.00e+00	1.01e+00	-1.0	9.03e-02	2 –	1.00e+00	1.00e+00f	1
3	4.5708829e-01	0.00e+00	9.53e+00	-1.0	4.29e-01	. –	1.00e+00	5.00e-01f	2
4	1.8894205e-01	0.00e+00	4.15e-01	-1.0	9.51e-02	2 –	1.00e+00	1.00e+00f	1
5	1.3918726e-01	0.00e+00	6.51e+00	-1.7	3.49e-01	. –	1.00e+00	5.00e-01f	2
6	5.4940990e-02	0.00e+00	4.51e-01	-1.7	9.29e-02	2 –	1.00e+00	1.00e+00f	1
7	2.9144630e-02	0.00e+00	2.27e+00	-1.7	2.49e-01	. –	1.00e+00	5.00e-01f	2
8	9.8586451e-03	0.00e+00	1.15e+00	-1.7	1.10e-01	. –	1.00e+00	1.00e+00f	1
9	2.3237475e-03	0.00e+00	1.00e+00	-1.7	1.00e-01	. –	1.00e+00	1.00e+00f	1
iter	objective	inf_pr	inf_du	lg(mu)	d	lg(rg)	alpha_du	alpha_pr	ls
10	2.3797236e-04	0.00e+00	2.19e-01	-1.7	5.09e-02	2 –	1.00e+00	1.00e+00f	1
11	4.9267371e-06	0.00e+00	5.95e-02	-1.7	2.53e-02	2 –	1.00e+00	1.00e+00f	1
12	2.8189505e-09	0.00e+00	8.31e-04	-2.5	3.20e-03	3 –	1.00e+00	1.00e+00f	1
13	1.0095040e-15	0.00e+00	8.68e-07	-5.7	9.78e-05	5 –	1.00e+00	1.00e+00f	1
14	1.3288608e-28	0.00e+00	2.02e-13	-8.6	4.65e-08	3 –	1.00e+00	1.00e+00f	1

Number of Iterations...: 14

Number of objective function evaluations = 36 Number of objective gradient evaluations = 15 Number of equality constraint evaluations = 0 Number of inequality constraint evaluations = 0 Number of equality constraint Jacobian evaluations = 0 Number of inequality constraint Jacobian evaluations = 0 Number of Lagrangian Hessian evaluations = 14 Total CPU secs in IPOPT (w/o function evaluations) 0.006 = Total CPU secs in NLP function evaluations 0.000 =

Out[17]: LOCALLY_SOLVED::TerminationStatusCode = 4

```
In [18]: # not bad, right?
    # adding the constraint from before:
    let
        m = Model(with_optimizer(Ipopt.Optimizer))
        @variable(m, x)
        @variable(m, y)
        @NLobjective(m, Min, (1-x)^2 + 100(y-x^2)^2)
        @NLconstraint(m,x^2 + y^2 <= 0.8)
        JuMP.optimize!(m)
        @show value(x)
        @show value(y)
        @show termination_status(m)
```

```
end
```

This is Ipopt version 3.12.10, running with linear solver mumps. NOTE: Other linear solvers might be more efficient (see Ipopt documentation).

Numbe	r of nonzeros in equality constraint Jacobian:	0		
Numbe	r of nonzeros in inequality constraint Jacobian.:	2		
Numbe	r of nonzeros in Lagrangian Hessian: 5			
Total	number of variables: 2			
	variables with only lower bounds:	0		
	variables with lower and upper bounds:	0		
	variables with only upper bounds:	0		
Total	number of equality constraints: 0			
Total	number of inequality constraints: 1			
	inequality constraints with only lower bounds:	0		
in	equality constraints with lower and upper bounds:	0		
	inequality constraints with only upper bounds:	1		
iter	<pre>objective inf_pr inf_du lg(mu) d lg(rg)</pre>	alpha_du	alpha_pr	ls
0	1.0000000e+00 0.00e+00 2.00e+00 -1.0 0.00e+00 -	0.00e+00	0.00e+00	0
1	9.5312500e-01 0.00e+00 1.25e+01 -1.0 5.00e-01 -	1.00e+00	5.00e-01f	2
2	4.9204994e-01 0.00e+00 9.72e-01 -1.0 8.71e-02 -	1.00e+00	1.00e+00f	1
3	2.0451702e+00 0.00e+00 3.69e+01 -1.7 3.80e-01 -	1.00e+00	1.00e+00H	1
4	1.0409466e-01 0.00e+00 3.10e-01 -1.7 1.46e-01 -	1.00e+00	1.00e+00f	1

5	8.5804626e-02 0.00e+00 2.71e-01	-1.7 9.98e-02	-	1.00e+00 1.00e+00h	1
6	9.4244879e-02 0.00e+00 6.24e-02	-1.7 3.74e-02	-	1.00e+00 1.00e+00h	1
7	8.0582034e-02 0.00e+00 1.51e-01	-2.5 6.41e-02	-	1.00e+00 1.00e+00h	1

8 7.8681242e-02 0.00e+00 2.12e-03 -2.5 1.12e-02 - 1.00e+00 1.00e+00h 1 9 7.6095770e-02 0.00e+00 6.16e-03 -3.8 1.37e-02 - 1.00e+00 1.00e+00h 1 objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls iter 10 7.6033892e-02 0.00e+00 2.23e-06 -3.8 3.99e-04 - 1.00e+00 1.00e+00h 1 11 7.5885642e-02 0.00e+00 2.07e-05 -5.7 7.99e-04 - 1.00e+00 1.00e+00h 1 12 7.5885428e-02 0.00e+00 2.74e-11 -5.7 1.38e-06 - 1.00e+00 1.00e+00h 1 13 7.5883585e-02 0.00e+00 3.19e-09 -8.6 9.93e-06 - 1.00e+00 1.00e+00f 1

Number of Iterations...: 13

(scaled)(unscaled)Objective...:7.5883585442440671e-027.5883585442440671e-02Dual infeasibility...:3.1949178858070582e-093.1949178858070582e-09Constraint violation...:0.000000000000000e+000.00000000000000e+00Complementarity...:2.5454985882932001e-092.5454985882932001e-09Overall NLP error...:3.1949178858070582e-093.1949178858070582e-09

Number of	objective function evaluations	=	20	
Number of	objective gradient evaluations	=	14	
Number of	equality constraint evaluations	=	0	
Number of	inequality constraint evaluations	=	20	
Number of	equality constraint Jacobian evaluations	=	0	
Number of	inequality constraint Jacobian evaluations	=	14	
Number of	Lagrangian Hessian evaluations	=	13	
Total CPU	secs in IPOPT (w/o function evaluations)	=		0.007
Total CPU	secs in NLP function evaluations	=		0.106

EXIT: Optimal Solution Found. value(x) = 0.7247018392092258 value(y) = 0.5242206029480763 termination_status(m) = LOCALLY_SOLVED::TerminationStatusCode = 4

Out[18]: LOCALLY_SOLVED::TerminationStatusCode = 4

2.11 JuMP: Maximium Likelihood

- Let's redo the maximum likelihood example in JuMP.
- Let μ , σ^2 be the unknown mean and variance of a random sample generated from the normal distribution.
- Find the maximum likelihood estimator for those parameters!
- density:

$$f(x_i|\mu,\sigma^2) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x_i-\mu)^2}{2\sigma^2}\right)$$

• Likelihood Function

$$L(\mu, \sigma^2) = \prod_{i=1}^N f(x_i | \mu, \sigma^2) = \frac{1}{(\sigma\sqrt{2\pi})^n} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^N (x_i - \mu)^2\right)$$
$$= (\sigma^2 2\pi)^{-\frac{n}{2}} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^N (x_i - \mu)^2\right)$$

- Constraints: $\mu \in \mathbb{R}, \sigma > 0$
- log-likelihood:

$$\log L = l = -\frac{n}{2} \log (2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^{N} (x_i - \mu)^2$$

• Let's do this in JuMP.

```
In [5]: # Copyright 2015, Iain Dunning, Joey Huchette, Miles Lubin, and contributors
    # example modified
    using Distributions
```

```
let
```

```
distrib = Normal(4.5, 3.5)
                                              n = 10000
                                               data = rand(distrib,n);
                                              m = Model(with_optimizer(Ipopt.Optimizer))
                                               @variable(m, mu, start = 0.0)
                                               @variable(m, sigma >= 0.0, start = 1.0)
                                               \texttt{ONLobjective(m, Max, -(n/2)*log(2*sigma^2)-sum((data[i] - mu) ^ 2 for i = 1:n)/(2*igma^2)} = \texttt{ONLobjective(m, Max, -(n/2)*log(2*sigma^2)-sum((data[i] - mu) ^ 2 for i = 1:n)/(2*igma^2)} = \texttt{ONLobjective(m, Max, -(n/2)*log(2*sigma^2)-sum((data[i] - mu) ^ 2 for i = 1:n)/(2*igma^2)} = \texttt{ONLobjective(m, Max, -(n/2)*log(2*sigma^2)-sum((data[i] - mu) ^ 2 for i = 1:n)/(2*igma^2)} = \texttt{ONLobjective(m, Max, -(n/2)*log(2*sigma^2)-sum((data[i] - mu) ^ 2 for i = 1:n)/(2*igma^2)} = \texttt{ONLobjective(m, Max, -(n/2)*log(2*sigma^2)-sum((data[i] - mu) ^ 2 for i = 1:n)/(2*igma^2)} = \texttt{ONLobjective(m, Max, -(n/2)*log(2*sigma^2)-sum((data[i] - mu) ^ 2 for i = 1:n)/(2*igma^2)} = \texttt{ONLobjective(m, Max, -(n/2)*log(2*igma^2)-sum((data[i] - mu) ^ 2 for i = 1:n)/(2*igma^2)} = \texttt{ONLobjective(m, Max, -(n/2)*log(2*igma^2)-sum((data[i] - mu) ^ 2 for i = 1:n)/(2*igma^2)} = \texttt{ONLobjective(m, Max, -(n/2)*log(2*igma^2)-sum((data[i] - mu) ^ 2 for i = 1:n)/(2*igma^2)} = \texttt{ONLobjective(m, Max, -(n/2)*log(2*igma^2)-sum((data[i] - mu) ^ 2 for i = 1:n)/(2*igma^2)} = \texttt{ONLobjective(m, Max, -(n/2)*log(2*igma^2)-sum((data[i] - mu) ^ 2 for i = 1:n)/(2*igma^2)} = \texttt{ONLobjective(m, Max, -(n/2)*log(2*igma^2)-sum((data[i] - mu) ^ 2 for i = 1:n)/(2*igma^2)} = \texttt{ONLobjective(m, Max, -(n/2)*log(2*igma^2)-sum((data[i] - mu) ^ 2 for i = 1:n)/(2*igma^2)} = \texttt{ONLobjective(m, Max, -(n/2)*log(2*igma^2)-sum((data[i] - mu) ^ 2 for i = 1:n)/(2*igma^2)} = \texttt{ONLobjective(m, Max, -(n/2)*log(2*igma^2)-sum((data[i] - mu) ^ 2 for i = 1:n)/(2*igma^2)} = \texttt{ONLobjective(m, Max, -(n/2)*log(2*igma^2)-sum((data[i] - mu) ^ 2 for i = 1:n)/(2*igma^2)} = \texttt{ONLobjective(m, Max, -(n/2)*log(2*igma^2)-sum((data[i] - mu) ^ 2 for i = 1:n)/(2*igma^2)} = \texttt{ONLobjective(m, Max, -(n/2)*log(2*igma^2)-sum((data[i] - mu) ^ 2 for i = 1:n)/(2*igma^2)} = \texttt{ONLobjective(m, Max, -(n/2)*log(2*igma^2)-sum((data[i] - mu) ^ 2 for i = 1:n)/(2*igma^2)} = \texttt{ONLobjective(m, Max, -(n/2)*log(2*igma^2)-sum((data[i] - mu) ^ 2 for i = 1:n)/(2*igma^2)} = \texttt{ONLobjective(m, Max, -(n/2)*log(2*igma^2)-sum((data[i] - mu) 
                                               JuMP.optimize!(m)
                                               @show termination_status(m)
                                               println(" = ", value(mu),", mean(data) = ", mean(data))
                                               println("^2 = ", value(sigma)^2, ", var(data) = ", var(data))
                                end
This is Ipopt version 3.12.10, running with linear solver mumps.
NOTE: Other linear solvers might be more efficient (see Ipopt documentation).
Number of nonzeros in equality constraint Jacobian...:
                                                                                                                                                                                                                                                    0
Number of nonzeros in inequality constraint Jacobian.:
                                                                                                                                                                                                                                                    0
Number of nonzeros in Lagrangian Hessian...:
                                                                                                                                                                                                             3
```

```
Total number of variables...: 2
variables with only lower bounds: 1
variables with lower and upper bounds: 0
```

variables with only upper bounds:	0	
Total number of equality constraints: 0		
Total number of inequality constraints: 0		
inequality constraints with only lower bounds:	0	
inequality constraints with lower and upper bounds:	0	
inequality constraints with only upper bounds:	0	

iter	objective	inf_pr	inf_du	lg(mu)	d	lg(rg)	alpha_du	alpha_pr	ls
0	1.7105531e+05	0.00e+00	1.01e+02	-1.0	0.00e+00	-	0.00e+00	0.00e+00	0
1	1.6780081e+05	0.00e+00	9.69e+01	-1.0	1.03e-02	4.0	1.00e+00	1.00e+00f	1
2	1.5836108e+05	0.00e+00	8.80e+01	-1.0	3.19e-02	3.5	1.00e+00	1.00e+00f	1
3	1.3311821e+05	0.00e+00	6.55e+01	-1.0	1.04e-01	3.0	1.00e+00	1.00e+00f	1
4	8.4962333e+04	0.00e+00	2.87e+01	-1.0	3.41e-01	2.6	1.00e+00	1.00e+00f	1
5	5.6465222e+04	0.00e+00	1.16e+01	-1.0	4.68e-01	2.1	1.00e+00	1.00e+00f	1
6	4.1974321e+04	0.00e+00	4.74e+00	-1.0	5.60e-01	1.6	1.00e+00	1.00e+00f	1
7	3.4160459e+04	0.00e+00	1.64e+00	-1.0	7.26e-01	1.1	1.00e+00	1.00e+00f	1
8	3.0717018e+04	0.00e+00	6.93e-01	-1.0	7.87e-01	0.7	1.00e+00	1.00e+00f	1
9	2.9230803e+04	0.00e+00	3.83e-01	-1.7	8.01e-01	0.2	1.00e+00	1.00e+00f	1
iter	objective	inf_pr	inf_du	lg(mu)	d	lg(rg)	alpha_du	alpha_pr	ls
10	2.8385271e+04	0.00e+00	2.69e-01	-1.7	1.17e+00	-0.3	1.00e+00	1.00e+00f	1
11	2.8124881e+04	0.00e+00	2.62e-01	-1.7	2.03e-01	0.1	1.00e+00	1.00e+00f	1
12	2.7372459e+04	0.00e+00	2.07e-01	-1.7	6.44e-01	-0.3	1.00e+00	1.00e+00f	1
13	2.7167859e+04	0.00e+00	1.78e-01	-1.7	1.92e-01	0.1	1.00e+00	1.00e+00f	1
14	2.6871675e+04	0.00e+00	2.11e-01	-2.5	9.21e-01	-0.4	1.00e+00	1.00e+00f	1
15	2.6749431e+04	0.00e+00	7.56e-02	-2.5	9.37e-01	0.0	1.00e+00	5.00e-01f	2
16	2.6736752e+04	0.00e+00	6.73e-02	-2.5	3.04e-02	0.5	1.00e+00	1.00e+00f	1
17	2.6706137e+04	0.00e+00	4.90e-02	-2.5	1.15e-01	-0.0	1.00e+00	1.00e+00f	1
18	2.6702789e+04	0.00e+00	4.36e-02	-2.5	2.14e-02	0.4	1.00e+00	1.00e+00f	1
19	2.6694444e+04	0.00e+00	2.52e-02	-2.5	7.31e-02	-0.1	1.00e+00	1.00e+00f	1
iter	objective	inf_pr	inf_du	lg(mu)	d	lg(rg)	alpha_du	alpha_pr	ls
20	2.6693514e+04	0.00e+00	2.19e-02	-3.8	1.26e-02	0.4	1.00e+00	1.00e+00f	1
21	2.6691281e+04	0.00e+00	1.02e-02	-3.8	4.46e-02	-0.1	1.00e+00	1.00e+00f	1
22	2.6691103e+04	0.00e+00	8.65e-03	-3.8	5.83e-03	0.3	1.00e+00	1.00e+00f	1
23	2.6690726e+04	0.00e+00	3.14e-03	-3.8	2.12e-02	-0.2	1.00e+00	1.00e+00f	1
24	2.6690695e+04	0.00e+00	2.59e-03	-3.8	2.07e-03	0.3	1.00e+00	1.00e+00f	1
25	2.6690680e+04	0.00e+00	2.07e-03	-3.8	2.19e-02	-0.2	1.00e+00	2.50e-01f	3
26	2.6690666e+04	0.00e+00	1.66e-03	-3.8	1.56e-03	0.2	1.00e+00	1.00e+00f	1
27	2.6690664e+04	0.00e+00	1.64e-03	-3.8	1.17e-01	-0.3	1.00e+00	1.56e-02f	7
28	2.6690658e+04	0.00e+00	1.26e-03	-3.8	1.43e-03	0.1	1.00e+00	1.00e+00f	1
29	2.6690656e+04	0.00e+00	1.17e-03	-5.7	3.62e-04	0.6	1.00e+00	1.00e+00f	1
iter	objective	inf_pr	inf_du	lg(mu)	d	lg(rg)	alpha_du	alpha_pr	ls
30	2.6690653e+04	0.00e+00	8.61e-04	-5.7	1.18e-03	0.1	1.00e+00	1.00e+00f	1
31	2.6690652e+04	0.00e+00	7.88e-04	-5.7	2.80e-04	0.5	1.00e+00	1.00e+00f	1
32	2.6690650e+04	0.00e+00	5.46e-04	-5.7	9.26e-04	0.0	1.00e+00	1.00e+00f	1
33	2.6690650e+04	0.00e+00	4.93e-04	-5.7	2.02e-04	0.5	1.00e+00	1.00e+00f	1
34	2.6690649e+04	0.00e+00	3.16e-04	-5.7	6.78e-04	-0.0	1.00e+00	1.00e+00f	1
35	2.6690649e+04	0.00e+00	2.81e-04	-5.7	1.33e-04	0.4	1.00e+00	1.00e+00f	1
36	2.6690648e+04	0.00e+00	1.62e-04	-5.7	4.55e-04	-0.1	1.00e+00	1.00e+00f	1

37	2.6690648e+04	0.00e+00	1.42e-04	-5.7	7.77e-05	0.4	1.00e+00	1.00e+00f	1
38	2.6690648e+04	0.00e+00	7.03e-05	-5.7	2.72e-04	-0.1	1.00e+00	1.00e+00f	1
39	2.6690648e+04	0.00e+00	6.02e-05	-5.7	3.86e-05	0.3	1.00e+00	1.00e+00f	1
iter	objective	inf_pr	inf_du	lg(mu)	d	lg(rg)	alpha_du	alpha_pr	ls
40	2.6690648e+04	0.00e+00	2.38e-05	-5.7	1.39e-04	-0.2	1.00e+00	1.00e+00f	1
41	2.6690648e+04	0.00e+00	1.99e-05	-5.7	1.50e-05	0.3	1.00e+00	1.00e+00f	1
42	2.6690648e+04	0.00e+00	5.28e-06	-5.7	5.60e-05	-0.2	1.00e+00	1.00e+00f	1
43	2.6690648e+04	0.00e+00	4.28e-06	-8.6	3.81e-06	0.2	1.00e+00	1.00e+00f	1
44	2.6690648e+04	0.00e+00	3.25e-06	-8.6	1.49e-05	-0.3	1.00e+00	5.00e-01f	2
45	2.6690648e+04	0.00e+00	1.82e-06	-8.6	3.46e-06	0.2	1.00e+00	1.00e+00f	1
46	2.6690648e+04	0.00e+00	1.69e-06	-8.6	5.01e-07	0.6	1.00e+00	1.00e+00f	1
47	2.6690648e+04	0.00e+00	1.27e-06	-8.6	1.63e-06	0.1	1.00e+00	1.00e+00f	1
48	2.6690648e+04	0.00e+00	1.16e-06	-8.6	3.95e-07	0.5	1.00e+00	1.00e+00f	1
49	2.6690648e+04	0.00e+00	8.23e-07	-8.6	1.30e-06	0.1	1.00e+00	1.00e+00f	1
iter	objective	inf_pr	inf_du	lg(mu)	d	lg(rg)	alpha_du	alpha_pr	ls
50	2.6690648e+04	0.00e+00	7.47e-07	-8.6	2.92e-07	0.5	1.00e+00	1.00e+00f	1
51	2.6690648e+04	0.00e+00	4.92e-07	-8.6	9.75e-07	0.0	1.00e+00	1.00e+00f	1
52	2.6690648e+04	0.00e+00	4.40e-07	-8.6	1.98e-07	0.4	1.00e+00	1.00e+00f	1
53	2.6690648e+04	0.00e+00	2.63e-07	-8.6	6.75e-07	-0.0	1.00e+00	1.00e+00f	1
54	2.6690648e+04	0.00e+00	2.32e-07	-8.6	1.21e-07	0.4	1.00e+00	1.00e+00f	1
55	2.6690648e+04	0.00e+00	1.22e-07	-8.6	4.21e-07	-0.1	1.00e+00	1.00e+00f	1
56	2.6690648e+04	0.00e+00	1.05e-07	-8.6	6.39e-08	0.3	1.00e+00	1.00e+00f	1
57	2.6690648e+04	0.00e+00	4.53e-08	-8.6	2.28e-07	-0.1	1.00e+00	1.00e+00f	1
58	2.6690648e+04	0.00e+00	3.82e-08	-8.6	2.72e-08	0.3	1.00e+00	1.00e+00f	1
59	2.6690648e+04	0.00e+00	1.19e-08	-8.6	1.00e-07	-0.2	1.00e+00	1.00e+00f	1
iter	objective	inf_pr	inf_du	lg(mu)	d	lg(rg)	alpha_du	alpha_pr	ls
60	2.6690648e+04	0.00e+00	9.76e-09	-9.0	8.21e-09	0.2	1.00e+00	1.00e+00f	1

Number of Iterations...: 60

(scaled)(unscaled)Objective...:8.5074714157088174e+002.6690648196634054e+04Dual infeasibility...:9.7569600551044561e-093.0610692128632544e-05Constraint violation...:0.00000000000000e+000.0000000000000e+00Complementarity...:9.0909090949984745e-102.8521078071934833e-06Overall NLP error...:9.7569600551044561e-093.0610692128632544e-05

Number of	objective function evaluations	= 87	
Number of	objective gradient evaluations	= 61	
Number of	equality constraint evaluations	= 0	
Number of	inequality constraint evaluations	= 0	
Number of	equality constraint Jacobian evaluations	= 0	
Number of	inequality constraint Jacobian evaluations	= 0	
Number of	Lagrangian Hessian evaluations	= 60	
Total CPU	secs in IPOPT (w/o function evaluations)	=	0.046
Total CPU	secs in NLP function evaluations	=	0.169

```
EXIT: Optimal Solution Found.
termination_status(m) = LOCALLY_SOLVED::TerminationStatusCode = 4
  =
WARNING: using Distributions.mode in module Main conflicts with an existing identifier.
```

```
4.493062898788303, mean(data) = 4.493062936089179
^2 = 12.185571328763903, var(data) = 12.186789996356879
```

3 Linear Constrained Problems (LPs)

• Very similar to before, just that both objective and constraints are *linear*.

$$\begin{split} \min_{\mathbf{x}} \mathbf{c}^{T} \mathbf{x} \\ \text{subject to } \mathbf{w}_{LE}^{(i)T} \mathbf{x} &\leq b_{i} \text{ for } i \in 1, 2, 3, \dots \\ \mathbf{w}_{GE}^{(j)T} \mathbf{x} &\geq b_{j} \text{ for } j \in 1, 2, 3, \dots \\ \mathbf{w}_{EQ}^{(k)T} \mathbf{x} &= b_{k} \text{ for } k \in 1, 2, 3, \dots \end{split}$$

• Our initial JuMP example was of that sort.

3.0.1 Standard Form

- Usually LPs are given in standard form
- All constraints are less-than inequalities
- All choice variables are non-negative.

 $\min_{\mathbf{x}} \mathbf{c}^T \mathbf{x}$

subject to $\mathbf{A}\mathbf{x} \leq b$

$$\mathbf{x} \ge 0$$

- Greater-than inequality constraints are inverted
- equality constraints are split into two
- $\mathbf{x} = \mathbf{x}^+ \mathbf{x}^-$ and we constrain both components to be positive.

3.0.2 Equality Form

$$\min_{\mathbf{x}} \mathbf{c}^{T} \mathbf{x}$$
subject to $\mathbf{A}\mathbf{x} = b$

$$\mathbf{x} \ge 0$$

• Can transform standard into equality form

$$\mathbf{A}\mathbf{x} \le b \to \mathbf{A}\mathbf{x} + \mathbf{s} = b, \mathbf{s} \ge 0$$

- equality constraints are split into two
- $\mathbf{x} = \mathbf{x}^+ \mathbf{x}^-$ and we constrain both components to be positive.

3.0.3 Solving LPs

- Simplex Algorithm operates on Equality Form
- Moving from one vertex to the next of the feasible set, this is guaranteed to find the optimal solution if the problem is bounded.

3.1 A Cannery Problem

- A can factory (a cannery) has plants in Seattle and San Diego
- They need to decide how to serve markets New-York, Chicago, Topeka
- Firm wants to
 - 1. minimize shipping costs
 - 2. shipments cannot exceed capacity
 - 3. shipments must satisfy demand
- Formalize that!
- Plant capacity *cap_i*, demands *d_j* and transport costs from plant *i* to market *j*, *dist_{i,j}c* are all given.
- Let **x** be a matrix with element *x*_{*i*,*j*} for number of cans shipped from *i* to *j*.

3.2 From Maths ...

$$\begin{split} \min_{\mathbf{x}} \sum_{i=1}^{2} \sum_{j=1}^{3} dist_{i,j} c \times x_{i,j} \\ \text{subject to } \sum_{j=1}^{3} x(i,j) \leq cap_i, \forall i \\ \sum_{i=1}^{2} x(i,j) \geq d_j, \forall j \end{split}$$

In [7]: # ... to JuMP

- # https://github.com/JuliaOpt/JuMP.jl/blob/release-0.19/examples/cannery.jl
- # Copyright 2017, Iain Dunning, Joey Huchette, Miles Lubin, and contributors
- # This Source Code Form is subject to the terms of the Mozilla Public
- # License, v. 2.0. If a copy of the MPL was not distributed with this
- # file, You can obtain one at http://mozilla.org/MPL/2.0/.

- # An algebraic modeling language for Julia
- # See http://github.com/JuliaOpt/JuMP.jl

```
using JuMP, GLPK, Test
const MOI = JuMP.MathOptInterface
.....
    example_cannery(; verbose = true)
JuMP implementation of the cannery problem from Dantzig, Linear Programming and
Extensions, Princeton University Press, Princeton, NJ, 1963.
Author: Louis Luangkesorn
Date: January 30, 2015
.....
function example_cannery(; verbose = true)
    plants = ["Seattle", "San-Diego"]
   markets = ["New-York", "Chicago", "Topeka"]
    # Capacity and demand in cases.
    capacity = [350, 600]
    demand = [300, 300, 300]
    # Distance in thousand miles.
    distance = [2.5 1.7 1.8; 2.5 1.8 1.4]
    # Cost per case per thousand miles.
    freight = 90
   num_plants = length(plants)
    num_markets = length(markets)
    cannery = Model(with_optimizer(GLPK.Optimizer))
    @variable(cannery, ship[1:num_plants, 1:num_markets] >= 0)
    # Ship no more than plant capacity
    @constraint(cannery, capacity_con[i in 1:num_plants],
        sum(ship[i,j] for j in 1:num_markets) <= capacity[i]</pre>
    )
    # Ship at least market demand
    @constraint(cannery, demand_con[j in 1:num_markets],
        sum(ship[i,j] for i in 1:num_plants) >= demand[j]
    )
    # Minimize transporatation cost
    @objective(cannery, Min, sum(distance[i, j] * freight * ship[i, j]
        for i in 1:num_plants, j in 1:num_markets)
    )
    JuMP.optimize!(cannery)
```

```
if verbose
                println("RESULTS:")
                for i in 1:num_plants
                    for j in 1:num_markets
                        println(" $(plants[i]) $(markets[j]) = $(JuMP.value(ship[i, j]))")
                    end
                end
            end
            @assert JuMP.termination_status(cannery) == MOI.OPTIMAL
            @assert JuMP.primal_status(cannery) == MOI.FEASIBLE_POINT
            @assert JuMP.objective_value(cannery) == 151200.0
        end
        example_cannery()
RESULTS:
  Seattle New-York = 50.0
  Seattle Chicago = 300.0
  Seattle Topeka = 0.0
  San-Diego New-York = 250.0
  San-Diego Chicago = 0.0
  San-Diego Topeka = 300.0
```

4 Discrete Optimization / Integer Programming

- Here the choice variable is contrained to come from a discrete set *X*.
- If this set is $\mathcal{X} = \mathbb{N}$, we have an **integer program**
- If only *some x* have to be discrete, this is a **mixed integer program**

4.1 Example

$$\begin{aligned} \min_{\mathbf{x}} x_1 + x_2 \\ \text{subject to } ||\mathbf{x}|| &\leq 2 \\ \mathbf{x} \in \mathbb{N} \end{aligned}$$

- continuous optimum is $(-\sqrt{2}, -\sqrt{2})$ and objective is $y = -2\sqrt{2} = -2.828$
- Integer constrained problem is only delivering y = -2, and $\mathbf{x}^* \in (-2, 0), (-1, -1), (0, -2)$

```
In [8]: x = -3:0.01:3
```

```
dx = repeat(range(-3,stop = 3, length = 7),1,7)
contourf(x,x,(x,y)->x+y,color=:blues)
scatter!(dx,dx',legend=false,markercolor=:white)
plot!(x->sqrt(4-x^2),-2,2,c=:white)
plot!(x->-sqrt(4-x^2),-2,2,c=:white)
scatter!([-2,-1,0],[0,-1,-2],c=:red)
scatter!([-sqrt(2)],[-sqrt(2)],c=:red,markershape=:cross,markersize=9)
```


4.2 Rounding

- One solution is to just round the continuous solution to the nearest integer
- We compute the **relaxed** problem, i.e. the one where *x* is continuous.
- Then we round up or down.
- Can go terribly wrong.

4.3 Cutting Planes

- This is an exact method
- We solve the relaxed problem first.
- Then we add linear constraints that result in the solution becoming integral.

4.4 Branch and Bound

- This enumerates all possible soultions.
- Branch and bound does this, without having to compute all of them.

4.5 Example: The Knapsack Problem

- We are packing our knapsack for a trip but only have space for the most valuable items.
- We have $x_i = 0$ if item *i* is not in the sack, 1 else.

$$\begin{split} \min_{x} &-\sum_{i=1}^{n} v_{i} x_{i} \\ \text{s.t.} \ \sum_{i=1}^{n} w_{i} x_{i} \leq w_{max} \\ w_{i} \in \mathbb{N}_{+}, v_{i} \in \mathbb{R} \end{split}$$

- If ther are *n* items, we have 2^n possible design vectors.
- But there is a useful recursive relationship.
- If we solved n 1 knapsack problems so far and deliberate about item n
 - If it's not worth including item *n*, then the solution **is** the knapsack problem for n 1 items and capacity w_{max}
 - If it IS worth including it: solution will have value of knapsack with n 1 items and reduced capacity, plus the value of the new item
- This **is** dynamic progamming.

4.5.1 Knacksack Recursion

• In particular, the recursion looks like this:

using JuMP, Cbc, LinearAlgebra

```
# Maximization problem
            m = Model(with_optimizer(Cbc.Optimizer))
            @variable(m, x[1:5], Bin)
            profit = [ 5, 3, 2, 7, 4 ]
            weight = [2, 8, 4, 2, 5]
            capacity = 10
            # Objective: maximize profit
            @objective(m, Max, dot(profit, x))
            # Constraint: can carry all
            @constraint(m, dot(weight, x) <= capacity)</pre>
            # Solve problem using MIP solver
            optimize!(m)
            println("Objective is: ", JuMP.objective_value(m))
            println("Solution is:")
            for i = 1:5
                print("x[$i] = ", JuMP.value(x[i]))
                println(", p[$i]/w[$i] = ", profit[i]/weight[i])
            end
        end
Objective is: 16.0
Solution is:
x[1] = 1.0, p[1]/w[1] = 2.5
x[2] = 0.0, p[2]/w[2] = 0.375
x[3] = 0.0, p[3]/w[3] = 0.5
x[4] = 1.0, p[4]/w[4] = 3.5
x[5] = 1.0, p[5]/w[5] = 0.8
Welcome to the CBC MILP Solver
Version: 2.9.9
Build Date: Dec 31 2018
command line - Cbc_C_Interface -solve -quit (default strategy 1)
Continuous objective value is 16.5 - 0.00 seconds
Cgl0004I processed model has 1 rows, 5 columns (5 integer (5 of which binary)) and 5 elements
Cutoff increment increased from 1e-05 to 0.9999
Cbc0038I Initial state - 1 integers unsatisfied sum - 0.25
Cbc0038I Solution found of -16
Cbc0038I Before mini branch and bound, 4 integers at bound fixed and 0 continuous
Cbc0038I Mini branch and bound did not improve solution (0.00 seconds)
Cbc0038I After 0.00 seconds - Feasibility pump exiting with objective of -16 - took 0.00 second
```

let

Cbc0012I Integer solution of -16 found by feasibility pump after 0 iterations and 0 nodes (0.00 Cbc0001I Search completed - best objective -16, took 1 iterations and 0 nodes (0.00 seconds) Cbc0035I Maximum depth 0, 4 variables fixed on reduced cost Cuts at root node changed objective from -16.5 to -16 Probing was tried 0 times and created 0 cuts of which 0 were active after adding rounds of cuts Gomory was tried 0 times and created 0 cuts of which 0 were active after adding rounds of cuts Knapsack was tried 0 times and created 0 cuts of which 0 were active after adding rounds of cuts Clique was tried 0 times and created 0 cuts of which 0 were active after adding rounds of cuts MixedIntegerRounding2 was tried 0 times and created 0 cuts of which 0 were active after adding rounds of cuts FlowCover was tried 0 times and created 0 cuts of which 0 were active after adding rounds of cuts TwoMirCuts was tried 0 times and created 0 cuts of which 0 were active after adding rounds of cuts

Result - Optimal solution found

Objective value:	16.000	00000	
Enumerated nodes:	0		
Total iterations:	1		
Time (CPU seconds):	0.00		
Time (Wallclock seconds):	0.02		
Total time (CPU seconds):	0.00	(Wallclock seconds):	0.03

In []: