
SciencesPo Computational Economics
Spring 2019

Florian Oswald

April 15, 2019

1 Optimization 2: Algorithms and Constraints

Florian Oswald Sciences Po, 2019

1.1 Bracketing

• A derivative-free method for univariate f
• works only on unimodal f
• (Draw choosing initial points and where to move next)

1.2 The Golden Ratio or Bracketing Search for 1D problems

• A derivative-free method
• a Bracketing method

– find the local minimum of f on [a, b]
– select 2 interior points c, d such that a < c < d < b

* f (c) ≤ f (d) =⇒ min must lie in [a, d]. replace b with d, start again with [a, d]
* f (c) > f (d) =⇒ min must lie in [c, b]. replace a with c, start again with [c, b]

– how to choose b, d though?
– we want the length of the interval to be independent of whether we replace upper or

lower bound
– we want to reuse the non-replaced point from the previous iteration.
– these imply the golden rule:
– new point xi = a + αi(b− a), where α1 = 3−

√
5

2 , α2 =
√

5−1
2

– α2 is known as the golden ratio, well known for it’s role in renaissance art.

In [1]: using Plots
using Optim
gr()
f(x) = exp(x) - x^4
minf(x) = -f(x)
brent = optimize(minf,0,2,Brent())
golden = optimize(minf,0,2,GoldenSection())

1

println("brent = $brent")
println("golden = $golden")
plot(f,0,2)

brent = Results of Optimization Algorithm
* Algorithm: Brent's Method
* Search Interval: [0.000000, 2.000000]
* Minimizer: 8.310315e-01
* Minimum: -1.818739e+00
* Iterations: 12
* Convergence: max(|x - x_upper|, |x - x_lower|) <= 2*(1.5e-08*|x|+2.2e-16): true
* Objective Function Calls: 13

golden = Results of Optimization Algorithm
* Algorithm: Golden Section Search
* Search Interval: [0.000000, 2.000000]
* Minimizer: 8.310315e-01
* Minimum: -1.818739e+00
* Iterations: 37
* Convergence: max(|x - x_upper|, |x - x_lower|) <= 2*(1.5e-08*|x|+2.2e-16): true
* Objective Function Calls: 38

Out[1]:

0.0 0.5 1.0 1.5 2.0

-7.5

-5.0

-2.5

0.0

y1

2

1.2.1 Bisection Methods

• Root finding: Roots.jl
• Root finding in multivariate functions: IntervalRootFinding.jl

In [80]: using Roots
#ăfind the zeros of this function:
f(x) = exp(x) - x^4
bracketing
fzero(f, 8, 9) # 8.613169456441398
fzero(f, -10, 0) # -0.8155534188089606

Out[80]: -0.8155534188089606

In [36]: using IntervalRootFinding, IntervalArithmetic
-10..10

Out[36]: [-10, 10]

In [37]: X = IntervalBox(1..3, 2..4)

Out[37]: [1, 3] Œ [2, 4]

In [38]: a = @interval(0.1, 0.3)
b = @interval(0.3, 0.6)
a + b

Out[38]: [0.399999, 0.900001]

In [41]: rts = roots(x->x^2 - 2, -10..10, IntervalRootFinding.Bisection)

Out[41]: 2-element Array{Root{Interval{Float64}},1}:
Root([1.41377, 1.41439], :unknown)
Root([-1.41471, -1.41407], :unknown)

1.3 Rosenbrock Banana and Optim.jl

• We can supply the objective function and - depending on the solution algorithm - the gradi-
ent and hessian as well.

In [4]: using Optim
using OptimTestProblems
for (name, prob) in MultivariateProblems.UnconstrainedProblems.examples

println(name)
end

Rosenbrock
Quadratic Diagonal
Hosaki
Large Polynomial

3

https://github.com/JuliaIntervals/IntervalRootFinding.jl/

Penalty Function I
Beale
Extended Rosenbrock
Polynomial
Powell
Exponential
Paraboloid Diagonal
Paraboloid Random Matrix
Extended Powell
Trigonometric
Fletcher-Powell
Parabola
Himmelblau

In [5]: rosenbrock = MultivariateProblems.UnconstrainedProblems.examples["Rosenbrock"]

Out[5]: OptimTestProblems.MultivariateProblems.OptimizationProblem{Nothing,Nothing,Float64,String,Nothing}("Rosenbrock", OptimTestProblems.MultivariateProblems.UnconstrainedProblems.rosenbrock, OptimTestProblems.MultivariateProblems.UnconstrainedProblems.rosenbrock_gradient!, nothing, OptimTestProblems.MultivariateProblems.UnconstrainedProblems.rosenbrock_hessian!, nothing, [-1.2, 1.0], [1.0, 1.0], 0.0, true, true, nothing)

1.4 Comparison Methods

• We will now look at a first class of algorithms, which are very simple, but sometimes a good
starting point.

• They just compare function values.
• Grid Search : Compute the objective function at G = {x1, . . . , xN} and pick the highest value

of f .

– This is very slow.
– It requires large N.
– But it’s robust (will find global optimizer for large enough N)

In [44]: # grid search on rosenbrock
grid = collect(-1.0:0.1:3);
grid2D = [[i;j] for i in grid,j in grid];
val2D = map(rosenbrock.f,grid2D);
r = findmin(val2D);
println("grid search results in minimizer = $(grid2D[r[2]])")

grid search results in minimizer = [1.0, 1.0]

1.5 Local Descent Methods

• Applicable to multivariate problems
• We are searching for a local model that provides some guidance in a certain region of f over

where to go to next.
• Gradient and Hessian are informative about this.

4

1.5.1 Local Descent Outline

All descent methods follow more or less this structure. At iteration k,

1. Check if candidate x(k) satisfies stopping criterion:

• if yes: stop
• if no: continue

2. Get the local descent direction d(k), using gradient, hessian, or both.
3. Set the step size, i.e. the length of the next step, αk

4. Get the next candidate via
x(k+1) ←− αkd(k)

1.5.2 The Line Search Strategy

• An algorithm from the line search class chooses a direction d(k) ∈ Rn and searches along
that direction starting from the current iterate xk ∈ Rn for a new iterate xk+1 ∈ Rn with a
lower function value.

• After deciding on a direction d(k), one needs to decide the step length α to travel by solving

min
α>0

f (xk + αd(k))

• In practice, solving this exactly is too costly, so algos usually generate a sequence of trial
values α and pick the one with the lowest f .

In [46]: # https://github.com/JuliaNLSolvers/LineSearches.jl
using LineSearches

algo_hz = Optim.Newton(linesearch = HagerZhang()) # Both Optim.jl and IntervalRootFinding.jl export `Newton`
res_hz = Optim.optimize(rosenbrock.f, rosenbrock.g!, rosenbrock.h!, rosenbrock.initial_x, method=algo_hz)

Out[46]: Results of Optimization Algorithm
* Algorithm: Newton's Method
* Starting Point: [-1.2,1.0]
* Minimizer: [1.0000000000000033,1.0000000000000067]
* Minimum: 1.109336e-29
* Iterations: 23
* Convergence: true

* |x - x'| 0.0e+00: false
|x - x'| = 1.13e-08

* |f(x) - f(x')| 0.0e+00 |f(x)|: false
|f(x) - f(x')| = 6.35e+13 |f(x)|

* |g(x)| 1.0e-08: true
|g(x)| = 6.66e-15

* Stopped by an increasing objective: false
* Reached Maximum Number of Iterations: false

* Objective Calls: 71
* Gradient Calls: 71
* Hessian Calls: 23

5

1.5.3 The Trust Region Strategy

• First choose max step size, then the direction
• Finds the next step x(k+1) by minimizing a model of f̂ over a trust region, centered on x(k)

– 2nd order Tayloer approx of f is common.

• Radius δ of trust region is changed based on how well f̂ fits f in trust region.
• Get x′ via

min
x′

f̂ (x′)

subject to ∥x− x′ ≤ δ∥

In [47]: # Optim.jl has a TrustRegion for Newton (see below for Newton's Method)
NewtonTrustRegion(; initial_delta = 1.0, # The starting trust region radius

delta_hat = 100.0, # The largest allowable trust region radius
eta = 0.1, #When rho is at least eta, accept the step.
rho_lower = 0.25, # When rho is less than rho_lower, shrink the trust region.
rho_upper = 0.75) # When rho is greater than rho_upper, grow the trust region (though no greater than delta_hat).

res = Optim.optimize(rosenbrock.f, rosenbrock.g!, rosenbrock.h!, rosenbrock.initial_x, method=NewtonTrustRegion())

Out[47]: Results of Optimization Algorithm
* Algorithm: Newton's Method (Trust Region)
* Starting Point: [-1.2,1.0]
* Minimizer: [0.9999999994405535,0.9999999988644926]
* Minimum: 3.405841e-19
* Iterations: 25
* Convergence: true

* |x - x'| 0.0e+00: false
|x - x'| = 8.84e-06

* |f(x) - f(x')| 0.0e+00 |f(x)|: false
|f(x) - f(x')| = 1.87e+08 |f(x)|

* |g(x)| 1.0e-08: true
|g(x)| = 5.53e-09

* Stopped by an increasing objective: false
* Reached Maximum Number of Iterations: false

* Objective Calls: 26
* Gradient Calls: 26
* Hessian Calls: 22

1.5.4 Stopping criteria

1. maximum number of iterations reached
2. absolute improvement | f (x)− f (x′)| ≤ ϵ
3. relative improvement | f (x)− f (x′)|/| f (x)| ≤ ϵ
4. Gradient close to zero |g(x)| ≈ 0

1.5.5 Gradient Descent

• Here we define
g(k) = ∇ f (d(k))

6

• And our descent becomes

d(k) = −∇ g(k)

∥g(k)∥
• Minimizing wrt step size results in a jagged path (each direction is orthogonal to previous

direction!)
α(k) = arg min α f (x(k) + αd(k))

• Conjugate Gradient avoids this issue.

In [48]: # Optim.jl again
GradientDescent(; alphaguess = LineSearches.InitialPrevious(),

linesearch = LineSearches.HagerZhang(),
P = nothing,
precondprep = (P, x) -> nothing)

Out[48]: GradientDescent{InitialPrevious{Float64},HagerZhang{Float64,Base.RefValue{Bool}},Nothing,getfield(Main, Symbol("##49#50"))}(InitialPrevious{Float64}
alpha: Float64 1.0
alphamin: Float64 0.0
alphamax: Float64 Inf

, HagerZhang{Float64,Base.RefValue{Bool}}
delta: Float64 0.1
sigma: Float64 0.9
alphamax: Float64 Inf
rho: Float64 5.0
epsilon: Float64 1.0e-6
gamma: Float64 0.66
linesearchmax: Int64 50
psi3: Float64 0.1
display: Int64 0
mayterminate: Base.RefValue{Bool}

, nothing, getfield(Main, Symbol("##49#50"))(), Flat())

In [49]: # there is a dedicated LineSearch package: https://github.com/JuliaNLSolvers/LineSearches.jl
GD = optimize(rosenbrock.f, rosenbrock.g!,[0.0, 0.0],GradientDescent())
GD1 = optimize(rosenbrock.f, rosenbrock.g!,[0.0, 0.0],GradientDescent(),Optim.Options(iterations=5000))
GD2 = optimize(rosenbrock.f, rosenbrock.g!,[0.0, 0.0],GradientDescent(),Optim.Options(iterations=50000))

println("gradient descent = $GD")
println("\n")
println("gradient descent 2 = $GD1")
println("\n")
println("gradient descent 3 = $GD2")

gradient descent = Results of Optimization Algorithm
* Algorithm: Gradient Descent
* Starting Point: [0.0,0.0]
* Minimizer: [0.9356732500354086,0.875073922357589]
* Minimum: 4.154782e-03
* Iterations: 1000

7

* Convergence: false
* |x - x'| 0.0e+00: false

|x - x'| = 1.82e-04
* |f(x) - f(x')| 0.0e+00 |f(x)|: false

|f(x) - f(x')| = 1.97e-03 |f(x)|
* |g(x)| 1.0e-08: false

|g(x)| = 8.21e-02
* Stopped by an increasing objective: false
* Reached Maximum Number of Iterations: true

* Objective Calls: 2532
* Gradient Calls: 2532

gradient descent 2 = Results of Optimization Algorithm
* Algorithm: Gradient Descent
* Starting Point: [0.0,0.0]
* Minimizer: [0.9978398797724763,0.9956717950747302]
* Minimum: 4.682073e-06
* Iterations: 5000
* Convergence: false

* |x - x'| 0.0e+00: false
|x - x'| = 5.08e-06

* |f(x) - f(x')| 0.0e+00 |f(x)|: false
|f(x) - f(x')| = 1.62e-03 |f(x)|

* |g(x)| 1.0e-08: false
|g(x)| = 2.53e-03

* Stopped by an increasing objective: false
* Reached Maximum Number of Iterations: true

* Objective Calls: 12532
* Gradient Calls: 12532

gradient descent 3 = Results of Optimization Algorithm
* Algorithm: Gradient Descent
* Starting Point: [0.0,0.0]
* Minimizer: [0.9999999914304203,0.9999999828109042]
* Minimum: 7.368706e-17
* Iterations: 20458
* Convergence: true

* |x - x'| 0.0e+00: false
|x - x'| = 2.00e-11

* |f(x) - f(x')| 0.0e+00 |f(x)|: false
|f(x) - f(x')| = 1.61e-03 |f(x)|

* |g(x)| 1.0e-08: true
|g(x)| = 9.99e-09

* Stopped by an increasing objective: false
* Reached Maximum Number of Iterations: false

* Objective Calls: 51177

8

* Gradient Calls: 51177

1.6 Second Order Methods

1.6.1 Newton’s Method

• We start with a 2nd order Taylor approx over x at step k:

q(x) = f (x(k)) + (x− x(k)) f ′(x(k)) +
(x− x(k))2

2
f ′′(x(k))

• We set find it’s root and rearrange to find the next step k + 1:

∂q(x)
∂x

= f ′(x(k)) + (x− x(k)) f ′′(x(k)) = 0

x(k+1) = x(k) − f ′(x(k))
f ′′(x(k))

• The same argument works for multidimensional functions by using Hessian and Gradient
• We would get a descent dk by setting:

dk = − gk

Hk

• There are several options to avoid (often costly) computation of the Hessian H:

1. Quasi-Newton updates H starting from identity matrix
2. Broyden-Fletcher-Goldfarb-Shanno (BFGS) does better with approx linesearch
3. L-BFGS is the limited memory version for large problems

In [6]: optimize(rosenbrock.f, rosenbrock.g!, rosenbrock.h!, [0.0, 0.0], Optim.Newton(),Optim.Options(show_trace=true))

Iter Function value Gradient norm
0 1.000000e+00 2.000000e+00
1 8.431140e-01 1.588830e+00
2 6.776980e-01 3.453340e+00
3 4.954645e-01 4.862093e+00
4 3.041921e-01 2.590086e+00
5 1.991512e-01 3.780900e+00
6 9.531907e-02 1.299090e+00
7 5.657827e-02 2.445401e+00
8 2.257807e-02 1.839332e+00
9 6.626125e-03 1.314236e+00

10 8.689753e-04 5.438279e-01
11 4.951399e-06 7.814556e-02
12 9.065070e-10 6.017046e-04
13 9.337686e-18 1.059738e-07
14 3.081488e-31 1.110223e-15

9

Out[6]: Results of Optimization Algorithm
* Algorithm: Newton's Method
* Starting Point: [0.0,0.0]
* Minimizer: [0.9999999999999994,0.9999999999999989]
* Minimum: 3.081488e-31
* Iterations: 14
* Convergence: true

* |x - x'| 0.0e+00: false
|x - x'| = 3.06e-09

* |f(x) - f(x')| 0.0e+00 |f(x)|: false
|f(x) - f(x')| = 3.03e+13 |f(x)|

* |g(x)| 1.0e-08: true
|g(x)| = 1.11e-15

* Stopped by an increasing objective: false
* Reached Maximum Number of Iterations: false

* Objective Calls: 44
* Gradient Calls: 44
* Hessian Calls: 14

In [7]: @show optimize(rosenbrock.f, rosenbrock.g!, rosenbrock.h!, [-1.0, 3.0], BFGS());

optimize(rosenbrock.f, rosenbrock.g!, rosenbrock.h!, [-1.0, 3.0], BFGS()) = Results of Optimization Algorithm
* Algorithm: BFGS
* Starting Point: [-1.0,3.0]
* Minimizer: [0.9999999999999956,0.999999999999987]
* Minimum: 1.707144e-27
* Iterations: 39
* Convergence: true

* |x - x'| 0.0e+00: false
|x - x'| = 1.54e-08

* |f(x) - f(x')| 0.0e+00 |f(x)|: false
|f(x) - f(x')| = 3.55e+10 |f(x)|

* |g(x)| 1.0e-08: true
|g(x)| = 1.63e-12

* Stopped by an increasing objective: false
* Reached Maximum Number of Iterations: false

* Objective Calls: 137
* Gradient Calls: 137

In [8]: # low memory BFGS
@show optimize(rosenbrock.f, rosenbrock.g!, rosenbrock.h!, [0.0, 0.0], LBFGS());

optimize(rosenbrock.f, rosenbrock.g!, rosenbrock.h!, [0.0, 0.0], LBFGS()) = Results of Optimization Algorithm
* Algorithm: L-BFGS
* Starting Point: [0.0,0.0]
* Minimizer: [0.999999999999928,0.9999999999998559]
* Minimum: 5.191703e-27
* Iterations: 24

10

* Convergence: true
* |x - x'| 0.0e+00: false

|x - x'| = 4.58e-11
* |f(x) - f(x')| 0.0e+00 |f(x)|: false

|f(x) - f(x')| = 8.50e+07 |f(x)|
* |g(x)| 1.0e-08: true

|g(x)| = 1.44e-13
* Stopped by an increasing objective: false
* Reached Maximum Number of Iterations: false

* Objective Calls: 67
* Gradient Calls: 67

Direct Methods

• No derivative information is used - derivative free
• If it’s very hard / impossible to provide gradient information, this is our only chance.
• Direct methods use other criteria than the gradient to inform the next step (and ulimtately

convergence).

1.6.2 Cyclic Coordinate Descent – Taxicab search

• We do a line search over each dimension, one after the other
• taxicab because the path looks like a NYC taxi changing direction at each block.
• given x(1), we proceed

x(2) = arg min
x1

f (x1, x(1)2 , . . . , x(1)n)

x(3) = arg min
x2

f (x(2)1 , x2, x(2)3 . . . , x(2)n)

• unfortunately this can easily get stuck because it can only move in 2 directions.

In [9]: # start to setup a basis function, i.e. unit vectors to index each direction:
basis(i, n) = [k == i ? 1.0 : 0.0 for k in 1 : n]
function cyclic_coordinate_descent(f, x,)

, n = Inf, length(x)
while abs() >

x = copy(x)
for i in 1 : n

d = basis(i, n)
x = line_search(f, x, d)

end
= norm(x - x)

end
return x

end

Out[9]: cyclic_coordinate_descent (generic function with 1 method)

11

1.6.3 General Pattern Search

• We search according to an arbitrary pattern P of candidate points, anchored at current guess
x.

• With step size α and set D of directions

P = x + αd for d ∈ D

• Convergence is guaranteed under conditions:

– D must be a positive spanning set: at least one d ∈ D has a non-zero gradient.

In [10]: function generalized_pattern_search(f, x, , D, , =0.5)
y, n = f(x), length(x)
evals = 0
while >

improved = false
for (i,d) in enumerate(D)

x = x + *d
y = f(x)
evals += 1
if y < y

x, y, improved = x, y, true
D = pushfirst!(deleteat!(D, i), d)
break

end
end
if !improved

*=
end

end
println("$evals evaluations")
return x

end

Out[10]: generalized_pattern_search (generic function with 2 methods)

In [11]: D = [[1,0],[0,1],[-1,-0.5]]
D = [[1,0],[0,1]]
y=generalized_pattern_search(rosenbrock.f,zeros(2),0.8,D,1e-6)

11923 evaluations

Out[11]: 2-element Array{Float64,1}:
0.9996734619140493
0.9993469238280956

12

1.7 Bracketing for Multidimensional Problems: Nelder-Mead

• The Goal here is to find the simplex containing the local minimizer x∗

• In the case where f is n-D, this simplex has n + 1 vertices
• In the case where f is 2-D, this simplex has 2 + 1 vertices, i.e. it’s a triangle.
• The method proceeds by evaluating the function at all n + 1 vertices, and by replacing the

worst function value with a new guess.
• this can be achieved by a sequence of moves:

– reflect
– expand
– contract
– shrink movements.

• this is a very popular method. The matlab functions fmincon and fminsearch implements
it.

• When it works, it works quite fast.
• No derivatives required.

In [12]: nm=optimize(rosenbrock.f, [0.0, 0.0], NelderMead());
nm.minimizer

Out[12]: 2-element Array{Float64,1}:
0.9999634355313174
0.9999315506115275

• But.

13

1.8 Bracketing for Multidimensional Problems: Comment on Nelder-Mead

Lagarias et al. (SIOPT, 1999): At present there is no function in any dimension greater
than one, for which the original Nelder-Mead algorithm has been proved to converge
to a minimizer.

Given all the known inefficiencies and failures of the Nelder-Mead algorithm [. . .], one
might wonder why it is used at all, let alone why it is so extraordinarily popular.

1.9 things to read up on

• Divided Rectangles (DIRECT)
• simulated annealing and other stochastic gradient methods

1.10 Stochastic Optimization Methods

• Gradient based methods like steepest descent may be susceptible to getting stuck at local
minima.

• Randomly shocking the value of the descent direction may be a solution to this.
• For example, one could modify our gradient descent from before to become

x(k+1) ←− x(k) + αkg(k) + ”(k)

• where ”(k) ∼ N(0, σ2
k), decreasing with k.

• This stochastic gradient descent is often used when training neural networks.

1.10.1 Simulated Annealing

• We specify a temperature that controls the degree of randomness.
• At first the temperature is high, letting the search jump around widely. This is to escape

local minima.
• The temperature is gradually decreased, reducing the step sizes. This is to find the local

optimimum in the best region.
• At every iteration k, we accept new point x′ with

Pr(accept x′) =

{
1 if ∆y ≤ 0
min(e∆y/t, 1) if ∆y > 0

• here ∆y = f (x′)− f (x), and t is the temperature.
• Pr(accept x′) is called the Metropolis Criterion, building block of Accept/Reject algorithms.

In [15]: #ăf: function
x: initial point
T: transition distribution
#ăt: temp schedule, k_max: max iterations
function simulated_annealing(f, x, T, t, k_max)

y = f(x)
ytrace = zeros(typeof(y),k_max)

14

x_best, y_best = x, y
for k in 1 : k_max

x = x + rand(T)
y = f(x)
y = y - y
if y 0 || rand() < exp(-y/t(k))

x, y = x, y
end
if y < y_best

x_best, y_best = x, y
end
ytrace[k] = y_best

end
return x_best,ytrace

end

Out[15]: simulated_annealing (generic function with 1 method)

In [1]: function ackley(x, a=20, b=0.2, c=2)
d = length(x)
return -a*exp(-b*sqrt(sum(x.^2)/d)) - exp(sum(cos.(c*xi) for xi in x)/d) + a + exp(1)

end
using Plots
gr()
surface(-30:0.1:30,-30:0.1:30,(x,y)->ackley([x, y]),cbar=false)

Out[1]:

15

In [16]: p = Any[]
using Distributions
gr()
niters = 1000
temps = (1,10,25)
push!(p,[plot(x->i/x,1:1000,title = "tmp $i",lw=2,ylims = (0,1),leg = false) for i in (1,10,25)]...)
for sig in (1,5,25), t1 in (1,10,25)

y = simulated_annealing(ackley,[15,15],MvNormal(2,sig),x->t1/x,1000)[2][:]
push!(p,plot(y,title = "sig = $sig",leg=false,lw=1.5,color="red",ylims = (0,20)))

end
plot(p...,layout = (4,3))

Out[16]:

0 250 500 750 1000
0.0
0.2
0.4
0.6
0.8
1.0

tmp 1

0 250 500 750 1000
0.0
0.2
0.4
0.6
0.8
1.0

tmp 10

0 250 500 750 1000
0.0
0.2
0.4
0.6
0.8
1.0

tmp 25

0 250 500 750 1000
0
5

10
15
20

sig = 1

0 250 500 750 1000
0
5

10
15
20

sig = 1

0 250 500 750 1000
0
5

10
15
20

sig = 1

0 250 500 750 1000
0
5

10
15
20

sig = 5

0 250 500 750 1000
0
5

10
15
20

sig = 5

0 250 500 750 1000
0
5

10
15
20

sig = 5

0 250 500 750 1000
0
5

10
15
20

sig = 25

0 250 500 750 1000
0
5

10
15
20

sig = 25

0 250 500 750 1000
0
5

10
15
20

sig = 25

2 Constraints

Recall our core optimization problem:

min
x∈Rn

f (x) s.t. x ∈ X

16

• Up to now, the feasible set was X ∈ Rn.
• In constrained problems X is a subset thereof.
• We already encountered box constraints, e.g. x ∈ [a, b].
• Sometimes the contrained solution coincides with the unconstrained one, sometimes it does

not.
• There are equality constraints and inequality constraints.

2.1 Lagrange Multipliers

• Used to optimize a function subject to equality constraints.

min
x

f (x)

subject to h(x) = 0

where both f and h have continuous partial derivatives.

• We look for contour lines of f that are aligned to contours of h(x) = 0.

In other words, we want to find the best x s.t. h(x) = 0 and we have

∇ f (x) = λ∇h(x)

for some Lagrange Mutliplier λ * Notice that we need the scalar λ because the magnitudes of
the gradients may be different. * We therefore form the the Lagrangian:

L(x, λ) = f (x)− λh(x)

2.1.1 Example

Suppose we have

min
x
− exp

(
−
(

x1x2 −
3
2

)2

−
(

x2 −
3
2

)2
)

subject to x1 − x2
2 = 0

We form the Lagrangiagn:

L(x1, x2, λ) = − exp

(
−
(

x1x2 −
3
2

)2

−
(

x2 −
3
2

)2
)
− λ(x1 − x2

2)

Then we compute the gradient wrt to x1, x2, λ, set to zero and solve.

In [11]: gr()
f(x1,x2) = -exp.(-(x1.*x2 - 3/2).^2 - (x2-3/2).^2)
c(x1) = sqrt(x1)
x=0:0.01:3.5
contour(x,x,(x,y)->f(x,y),lw=1.5,levels=[collect(0:-0.1:-0.85)...,-0.887,-0.95,-1])
plot!(c,0.01,3.5,label="",lw=2,color=:black)
scatter!([1.358],[1.165],markersize=5,markercolor=:red,label="Constr. Optimum")

17

Out[11]:

0 1 2 3

0

1

2

3

- 1.0

- 0.9

- 0.8

- 0.7

- 0.6

- 0.5

- 0.4

- 0.3

- 0.2

- 0.1

0

Constr. Optimum

• If we had multiple constraints (l), we’d just add them up to get

L(x, ˘) = f (x)−
l

∑
i=1

λihi(x)

2.2 Inequality Constraints

Suppose now we had

min
x

f (x)

subject to g(x) ≤ 0

which, if the solution lies right on the constraint boundary, means that

∇ f − µ∇g = 0

for some scalar µ - as before.

• In this case, we say the constraint is active.
• In the opposite case, i.e. the solution lies inside the contrained region, we way the contraint

is inactive.
• In that case, we are back to an unconstrained problem, look for ∇ f = 0, and set µ = 0.

18

In [12]: #ăthe blue area shows the FEASIBLE SET
contour(x,x,(x,y)->f(x,y),lw=1.5,levels=[collect(0:-0.1:-0.85)...,-0.887,-0.95,-1])
plot!(c,0.01,3.5,label="",lw=2,color=:black,fill=(0,0.5,:blue))
scatter!([1.358],[1.165],markersize=5,markercolor=:red,label="Constr. Optimum")

Out[12]:

0 1 2 3

0

1

2

3

- 1.0

- 0.9

- 0.8

- 0.7

- 0.6

- 0.5

- 0.4

- 0.3

- 0.2

- 0.1

0

Constr. Optimum

In [13]: #ăthe blue area shows the FEASIBLE SET
#ăNOW THE CONSTRAINT IS INACTIVE OR SLACK!
c2(x1) = 1+sqrt(x1)
contour(x,x,(x,y)->f(x,y),lw=1.5,levels=[collect(0:-0.1:-0.85)...,-0.887,-0.95,-1])
plot!(c2,0.01,3.5,label="",lw=2,color=:black,fill=(0,0.5,:blue))
scatter!([1],[1.5],markersize=5,markercolor=:red,label="Unconstr. Optimum")

Out[13]:

19

0 1 2 3

0

1

2

3

- 1.0

- 0.9

- 0.8

- 0.7

- 0.6

- 0.5

- 0.4

- 0.3

- 0.2

- 0.1

0

Unconstr. Optimum

2.3 Infinity Step

• We could do an infinite step to avoid infeasible points:

f∞-step =

{
f (x) if g(x) ≤ 0
∞ else.

= f (x) + ∞(g(x > 0)

• Unfortunately, this is discontinous and non-differentiable, i.e. hard to handle for algorithms.
• Instead, we use a linear penalty µg(x) on the objective if the constraint is violated.
• The penalty provides a lower bound to ∞:

L(x, µ) = f (x) + µg(x)

• We can get back the infinite step by maximizing the penalty:

f∞-step = max
µ≥0
L(x, µ)

• Every infeasible x returns ∞, all others return f (x)

20

2.4 Kuhn-Karush-Tucker (KKT)

• Our problem thus becomes

min
x

max
µ≥0
L(x, µ)

• This is called the primal problem. Optimizing this requires:

1. g(x∗) ≤ 0. Point is feasible.
2. µ ≥ 0. Penalty goes into the right direction. Dual feasibility.
3. µg(x∗) = 0. Feasible point on the boundary has g(x) = 0, otherwise g(x) < 0 and µ = 0.
4. ∇ f (x∗) − µ∇g(x∗) = 0. With an active constraint, we want parallel contours of objective

and constraint. When inactive, our optimum just has ∇ f (x∗) = 0, which means µ = 0.

The preceding four conditions are called the Kuhn-Karush-Tucker (KKT) conditions. In the
above order, and in general terms, they are:

1. Feasibility
2. Dual Feasibility
3. Complementary Slackness
4. Stationarity.

The KKT conditions are the FONCs for problems with smooth constraints.

2.5 Duality

We can combine equality and inequality constraints:

L(x, ˘, ¯) = f (x) + ∑
i

λihi(x) + ∑
j

µjgj(x)

where, notice, we reverted the sign of λ since this is unrestricted.

• The Primal problem is identical to the original problem and just as difficult to solve:

min
x

max
¯≥0,˘
L(x, ¯, ˘)

• The Dual problem reverses min and max:

max
¯≥0,˘

min
x
L(x, ¯, ˘)

21

2.5.1 Dual Values

• The max-min-inequality states that for any function f (a, b)

max
a

min
b

f (a, b) ≤ min
b

max
a

f (a, b)

• Hence, the solution to the dual is a lower bound to the solution of the primal problem.
• The solution to the dual function, minx L(x, ¯, ˘) is the min of a collection of linear functions,

and thus always concave.
• It is easy to optimize this.
• In general, solving the dual is easy whenever minimizing L wrt x is easy.

Penalty Methods

• We can convert the constrained problem back to unconstrained by adding penalty terms for
constraint violoations.

• A simple method could just count the number of violations:

pcount(x) = ∑
i
(hi(x) ̸= 0) + ∑

j
(gj(x > 0)

• and add this to the objective in an unconstrained problem with penalty ρ > 0

min
x

f (x) + ρpcount(x)

• One can choose the penalty function: for example, a quadratic penaly will produce a smooth
objective function

• Notice that ρ needs to become very large sometimes here.

Augmented Lagrange Method

• This is very similar, but specific to equality constraints.

Interior Point Method

• Also called barrier method.
• These methods make sure that the search point remains always feasible.
• As one approaches the constraint boundary, the barrier function goes to infinity. Properties:

1. pbarrier(x) is continuous
2. pbarrier(x) is non negative
3. pbarrier(x) goes to infinitey as one approaches the constraint boundary

22

2.5.2 Barriers

• Inverse Barrier

pbarrier(x) = −∑
i

1
gi(x)

• Log Barrier

pbarrier(x) = −∑
i

{
log(−gi(x)) if gi(x) ≥ −1
0 else.

• The approach is as before, one transforms the problem to an unconstrained one and increases
ρ until convergence:

min
x

f (x) +
1
ρ

pbarrier(x)

2.5.3 Examples

min
x∈R2

√
x2 subject to

x2 ≥ 0
x2 ≥ (a1x1 + b1)

3

x2 ≥ (a2x1 + b2)3

2.6 Constrained Optimisation with NLopt.jl

• We need to specify one function for each objective and constraint.
• Both of those functions need to compute the function value (i.e. objective or constraint) and

it’s respective gradient.
• NLopt expects contraints always to be formulated in the format

g(x) ≤ 0

where g is your constraint function
• The constraint function is formulated for each constraint at x. it returns a number (the value

of the constraint at x), and it fills out the gradient vector, which is the partial derivative of
the current constraint wrt x.

• There is also the option to have vector valued constraints, see the documentation.
• We set this up as follows:

In [9]: using NLopt

count = 0 # keep track of # function evaluations

function myfunc(x::Vector, grad::Vector)
if length(grad) > 0

grad[1] = 0

23

https://github.com/JuliaOpt/NLopt.jl

grad[2] = 0.5/sqrt(x[2])
end

global count
count::Int += 1
println("f_$count($x)")

sqrt(x[2])
end

function myconstraint(x::Vector, grad::Vector, a, b)
if length(grad) > 0

grad[1] = 3a * (a*x[1] + b)^2
grad[2] = -1

end
(a*x[1] + b)^3 - x[2]

end

opt = Opt(:LD_MMA, 2)
lower_bounds!(opt, [-Inf, 0.])
xtol_rel!(opt,1e-4)

min_objective!(opt, myfunc)
inequality_constraint!(opt, (x,g) -> myconstraint(x,g,2,0), 1e-8)
inequality_constraint!(opt, (x,g) -> myconstraint(x,g,-1,1), 1e-8)

(minfunc,minx,ret) = NLopt.optimize(opt, [1.234, 5.678])
println("got $minfunc at $minx after $count iterations (returned $ret)")

f_1([1.234, 5.678])
f_2([0.878739, 5.55137])
f_3([0.826216, 5.0439])
f_4([0.473944, 4.07677])
f_5([0.353898, 3.03085])
f_6([0.333873, 1.97179])
f_7([0.333334, 1.04509])
f_8([0.333334, 0.469503])
f_9([0.333333, 0.305792])
f_10([0.333333, 0.296322])
f_11([0.333333, 0.296296])
got 0.5443310477213124 at [0.333333, 0.296296] after 11 iterations (returned XTOL_REACHED)

WARNING: using NLopt.optimize! in module Main conflicts with an existing identifier.

2.7 NLopt: Rosenbrock

• Let’s tackle the rosenbrock example again.

24

• To make it more interesting, let’s add an inequality constraint.

min
x∈R2

(1− x1)
2 + 100(x2 − x2

1)
2 subject to 0.8− x2

1 − x2
2 ≥ 0

• in NLopt format, the constraint is x1 + x2 − 0.8 ≤ 0

In [9]: function rosenbrockf(x::Vector,grad::Vector)
if length(grad) > 0

grad[1] = -2.0 * (1.0 - x[1]) - 400.0 * (x[2] - x[1]^2) * x[1]
grad[2] = 200.0 * (x[2] - x[1]^2)

end
return (1.0 - x[1])^2 + 100.0 * (x[2] - x[1]^2)^2

end
function r_constraint(x::Vector, grad::Vector)

if length(grad) > 0
grad[1] = 2*x[1]
grad[2] = 2*x[2]
end
return x[1]^2 + x[2]^2 - 0.8

end
opt = Opt(:LD_MMA, 2)
lower_bounds!(opt, [-5, -5.0])
min_objective!(opt,(x,g) -> rosenbrockf(x,g))
inequality_constraint!(opt, (x,g) -> r_constraint(x,g))
ftol_rel!(opt,1e-9)
NLopt.optimize(opt, [-1.0,0.0])

Out[9]: (0.07588358473630112, [0.724702, 0.524221], :FTOL_REACHED)

2.8 JuMP.jl

• Introduce JuMP.jl
• JuMP is a mathematical programming interface for Julia. It is like AMPL, but for free and

with a decent programming language.
• The main highlights are:

– It uses automatic differentiation to compute derivatives from your expression.
– It supplies this information, as well as the sparsity structure of the Hessian to your

preferred solver.
– It decouples your problem completely from the type of solver you are using. This is

great, since you don’t have to worry about different solvers having different interfaces.
– In order to achieve this, JuMP uses MathProgBase.jl, which converts your problem

formulation into a standard representation of an optimization problem.

• Let’s look at the readme
• The technical citation is Lubin et al [?]

2.9 JuMP: Quick start guide

• this is form the quick start guide
• please check the docs, they are excellent.

25

https://github.com/JuliaOpt/JuMP.jl
https://github.com/JuliaOpt/MathProgBase.jl
http://www.juliaopt.org/JuMP.jl/v0.19.0/

2.9.1 Step 1: create a model

• A model collects variables, objective function and constraints.
• it defines a specific solver to be used.
• JuMP makes it very easy to swap out solver backends - This is very valuable!

In [18]: using JuMP
using GLPK
model = Model(with_optimizer(GLPK.Optimizer))
@variable(model, 0 <= x <= 2)
@variable(model, 0 <= y <= 30)
next, we set an objective function
@objective(model, Max, 5x + 3 * y)

maybe add a constraint called "con":
@constraint(model, con, 1x + 5y <= 3);

• At this stage JuMP has a mathematical representation of our model internalized
• The MathProgBase machinery knows now exactly how to translate that to different solver

interfaces
• For us the only thing left: hit the button!

In [15]: JuMP.optimize!(model)

look at status
termination_status(model)

Out[15]: OPTIMAL::TerminationStatusCode = 1

In [16]: # we query objective value and solutions
@show objective_value(model)
@show value(x)
@show value(y)

as well as the value of the dual variable on the constraint
@show dual(con);

objective_value(model) = 10.6
value(x) = 2.0
value(y) = 0.2
dual(con) = -0.6

• The last call gets the dual value associated with a constraint
• Economists most of the time call that the value of the lagrange multiplier.

For linear programs, a feasible dual on a >= constraint is nonnegative and a feasible
dual on a <= constraint is nonpositive

• This is different to some textbooks and has nothing to do with wether max or minimizing.

26

http://www.juliaopt.org/JuMP.jl/dev/installation/

In [71]: # helpfully, we have this, which is always positive:
shadow_price(con)

Out[71]: 0.6

2.10 JuMP handles. . .

• linear programming
• mixed-integer programming
• second-order conic programming
• semidefinite programming, and
• nonlinear programming

In [17]: # JuMP: nonlinear Rosenbrock Example
Instead of hand-coding first and second derivatives, you only have to give `JuMP` expressions for objective and constraints.
Here is an example.

using Ipopt

let

m = Model(with_optimizer(Ipopt.Optimizer))

@variable(m, x)
@variable(m, y)

@NLobjective(m, Min, (1-x)^2 + 100(y-x^2)^2)

JuMP.optimize!(m)
@show value(x)
@show value(y)
@show termination_status(m)

end

This is Ipopt version 3.12.10, running with linear solver mumps.
NOTE: Other linear solvers might be more efficient (see Ipopt documentation).

Number of nonzeros in equality constraint Jacobian...: 0
Number of nonzeros in inequality constraint Jacobian.: 0
Number of nonzeros in Lagrangian Hessian...: 3

Total number of variables...: 2
variables with only lower bounds: 0

variables with lower and upper bounds: 0
variables with only upper bounds: 0

Total number of equality constraints...: 0
Total number of inequality constraints...: 0

inequality constraints with only lower bounds: 0

27

inequality constraints with lower and upper bounds: 0
inequality constraints with only upper bounds: 0

iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls
0 1.0000000e+00 0.00e+00 2.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0
1 9.5312500e-01 0.00e+00 1.25e+01 -1.0 1.00e+00 - 1.00e+00 2.50e-01f 3
2 4.8320569e-01 0.00e+00 1.01e+00 -1.0 9.03e-02 - 1.00e+00 1.00e+00f 1
3 4.5708829e-01 0.00e+00 9.53e+00 -1.0 4.29e-01 - 1.00e+00 5.00e-01f 2
4 1.8894205e-01 0.00e+00 4.15e-01 -1.0 9.51e-02 - 1.00e+00 1.00e+00f 1
5 1.3918726e-01 0.00e+00 6.51e+00 -1.7 3.49e-01 - 1.00e+00 5.00e-01f 2
6 5.4940990e-02 0.00e+00 4.51e-01 -1.7 9.29e-02 - 1.00e+00 1.00e+00f 1
7 2.9144630e-02 0.00e+00 2.27e+00 -1.7 2.49e-01 - 1.00e+00 5.00e-01f 2
8 9.8586451e-03 0.00e+00 1.15e+00 -1.7 1.10e-01 - 1.00e+00 1.00e+00f 1
9 2.3237475e-03 0.00e+00 1.00e+00 -1.7 1.00e-01 - 1.00e+00 1.00e+00f 1

iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls
10 2.3797236e-04 0.00e+00 2.19e-01 -1.7 5.09e-02 - 1.00e+00 1.00e+00f 1
11 4.9267371e-06 0.00e+00 5.95e-02 -1.7 2.53e-02 - 1.00e+00 1.00e+00f 1
12 2.8189505e-09 0.00e+00 8.31e-04 -2.5 3.20e-03 - 1.00e+00 1.00e+00f 1
13 1.0095040e-15 0.00e+00 8.68e-07 -5.7 9.78e-05 - 1.00e+00 1.00e+00f 1
14 1.3288608e-28 0.00e+00 2.02e-13 -8.6 4.65e-08 - 1.00e+00 1.00e+00f 1

Number of Iterations...: 14

(scaled) (unscaled)
Objective...: 1.3288608467480825e-28 1.3288608467480825e-28
Dual infeasibility...: 2.0183854587685121e-13 2.0183854587685121e-13
Constraint violation...: 0.0000000000000000e+00 0.0000000000000000e+00
Complementarity...: 0.0000000000000000e+00 0.0000000000000000e+00
Overall NLP error...: 2.0183854587685121e-13 2.0183854587685121e-13

Number of objective function evaluations = 36
Number of objective gradient evaluations = 15
Number of equality constraint evaluations = 0
Number of inequality constraint evaluations = 0
Number of equality constraint Jacobian evaluations = 0
Number of inequality constraint Jacobian evaluations = 0
Number of Lagrangian Hessian evaluations = 14
Total CPU secs in IPOPT (w/o function evaluations) = 0.006
Total CPU secs in NLP function evaluations = 0.000

EXIT: Optimal Solution Found.
value(x) = 0.9999999999999899
value(y) = 0.9999999999999792
termination_status(m) = LOCALLY_SOLVED::TerminationStatusCode = 4

Out[17]: LOCALLY_SOLVED::TerminationStatusCode = 4

28

In [18]: # not bad, right?
adding the constraint from before:

let

m = Model(with_optimizer(Ipopt.Optimizer))

@variable(m, x)
@variable(m, y)

@NLobjective(m, Min, (1-x)^2 + 100(y-x^2)^2)

@NLconstraint(m,x^2 + y^2 <= 0.8)

JuMP.optimize!(m)
@show value(x)
@show value(y)
@show termination_status(m)

end

This is Ipopt version 3.12.10, running with linear solver mumps.
NOTE: Other linear solvers might be more efficient (see Ipopt documentation).

Number of nonzeros in equality constraint Jacobian...: 0
Number of nonzeros in inequality constraint Jacobian.: 2
Number of nonzeros in Lagrangian Hessian...: 5

Total number of variables...: 2
variables with only lower bounds: 0

variables with lower and upper bounds: 0
variables with only upper bounds: 0

Total number of equality constraints...: 0
Total number of inequality constraints...: 1

inequality constraints with only lower bounds: 0
inequality constraints with lower and upper bounds: 0

inequality constraints with only upper bounds: 1

iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls
0 1.0000000e+00 0.00e+00 2.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0
1 9.5312500e-01 0.00e+00 1.25e+01 -1.0 5.00e-01 - 1.00e+00 5.00e-01f 2
2 4.9204994e-01 0.00e+00 9.72e-01 -1.0 8.71e-02 - 1.00e+00 1.00e+00f 1
3 2.0451702e+00 0.00e+00 3.69e+01 -1.7 3.80e-01 - 1.00e+00 1.00e+00H 1
4 1.0409466e-01 0.00e+00 3.10e-01 -1.7 1.46e-01 - 1.00e+00 1.00e+00f 1
5 8.5804626e-02 0.00e+00 2.71e-01 -1.7 9.98e-02 - 1.00e+00 1.00e+00h 1
6 9.4244879e-02 0.00e+00 6.24e-02 -1.7 3.74e-02 - 1.00e+00 1.00e+00h 1
7 8.0582034e-02 0.00e+00 1.51e-01 -2.5 6.41e-02 - 1.00e+00 1.00e+00h 1

29

8 7.8681242e-02 0.00e+00 2.12e-03 -2.5 1.12e-02 - 1.00e+00 1.00e+00h 1
9 7.6095770e-02 0.00e+00 6.16e-03 -3.8 1.37e-02 - 1.00e+00 1.00e+00h 1

iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls
10 7.6033892e-02 0.00e+00 2.23e-06 -3.8 3.99e-04 - 1.00e+00 1.00e+00h 1
11 7.5885642e-02 0.00e+00 2.07e-05 -5.7 7.99e-04 - 1.00e+00 1.00e+00h 1
12 7.5885428e-02 0.00e+00 2.74e-11 -5.7 1.38e-06 - 1.00e+00 1.00e+00h 1
13 7.5883585e-02 0.00e+00 3.19e-09 -8.6 9.93e-06 - 1.00e+00 1.00e+00f 1

Number of Iterations...: 13

(scaled) (unscaled)
Objective...: 7.5883585442440671e-02 7.5883585442440671e-02
Dual infeasibility...: 3.1949178858070582e-09 3.1949178858070582e-09
Constraint violation...: 0.0000000000000000e+00 0.0000000000000000e+00
Complementarity...: 2.5454985882932001e-09 2.5454985882932001e-09
Overall NLP error...: 3.1949178858070582e-09 3.1949178858070582e-09

Number of objective function evaluations = 20
Number of objective gradient evaluations = 14
Number of equality constraint evaluations = 0
Number of inequality constraint evaluations = 20
Number of equality constraint Jacobian evaluations = 0
Number of inequality constraint Jacobian evaluations = 14
Number of Lagrangian Hessian evaluations = 13
Total CPU secs in IPOPT (w/o function evaluations) = 0.007
Total CPU secs in NLP function evaluations = 0.106

EXIT: Optimal Solution Found.
value(x) = 0.7247018392092258
value(y) = 0.5242206029480763
termination_status(m) = LOCALLY_SOLVED::TerminationStatusCode = 4

Out[18]: LOCALLY_SOLVED::TerminationStatusCode = 4

2.11 JuMP: Maximium Likelihood

• Let’s redo the maximum likelihood example in JuMP.
• Let µ, σ2 be the unknown mean and variance of a random sample generated from the normal

distribution.
• Find the maximum likelihood estimator for those parameters!
• density:

f (xi|µ, σ2) =
1

σ
√

2π
exp

(
− (xi − µ)2

2σ2

)
• Likelihood Function

30

L(µ, σ2) = ΠN
i=1 f (xi|µ, σ2) =

1
(σ
√

2π)n
exp

(
− 1

2σ2

N

∑
i=1

(xi − µ)2

)

=
(
σ22π

)− n
2 exp

(
− 1

2σ2

N

∑
i=1

(xi − µ)2

)

• Constraints: µ ∈ R, σ > 0
• log-likelihood:

log L = l = −n
2

log
(
2πσ2)− 1

2σ2

N

∑
i=1

(xi − µ)2

• Let’s do this in JuMP.

In [5]: # Copyright 2015, Iain Dunning, Joey Huchette, Miles Lubin, and contributors
example modified
using Distributions

let
distrib = Normal(4.5,3.5)
n = 10000

data = rand(distrib,n);

m = Model(with_optimizer(Ipopt.Optimizer))

@variable(m, mu, start = 0.0)
@variable(m, sigma >= 0.0, start = 1.0)

@NLobjective(m, Max, -(n/2)*log(2*sigma^2)-sum((data[i] - mu) ^ 2 for i = 1:n)/(2*sigma^2))

JuMP.optimize!(m)
@show termination_status(m)
println(" = ", value(mu),", mean(data) = ", mean(data))
println("^2 = ", value(sigma)^2, ", var(data) = ", var(data))

end

This is Ipopt version 3.12.10, running with linear solver mumps.
NOTE: Other linear solvers might be more efficient (see Ipopt documentation).

Number of nonzeros in equality constraint Jacobian...: 0
Number of nonzeros in inequality constraint Jacobian.: 0
Number of nonzeros in Lagrangian Hessian...: 3

Total number of variables...: 2
variables with only lower bounds: 1

variables with lower and upper bounds: 0

31

variables with only upper bounds: 0
Total number of equality constraints...: 0
Total number of inequality constraints...: 0

inequality constraints with only lower bounds: 0
inequality constraints with lower and upper bounds: 0

inequality constraints with only upper bounds: 0

iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls
0 1.7105531e+05 0.00e+00 1.01e+02 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0
1 1.6780081e+05 0.00e+00 9.69e+01 -1.0 1.03e-02 4.0 1.00e+00 1.00e+00f 1
2 1.5836108e+05 0.00e+00 8.80e+01 -1.0 3.19e-02 3.5 1.00e+00 1.00e+00f 1
3 1.3311821e+05 0.00e+00 6.55e+01 -1.0 1.04e-01 3.0 1.00e+00 1.00e+00f 1
4 8.4962333e+04 0.00e+00 2.87e+01 -1.0 3.41e-01 2.6 1.00e+00 1.00e+00f 1
5 5.6465222e+04 0.00e+00 1.16e+01 -1.0 4.68e-01 2.1 1.00e+00 1.00e+00f 1
6 4.1974321e+04 0.00e+00 4.74e+00 -1.0 5.60e-01 1.6 1.00e+00 1.00e+00f 1
7 3.4160459e+04 0.00e+00 1.64e+00 -1.0 7.26e-01 1.1 1.00e+00 1.00e+00f 1
8 3.0717018e+04 0.00e+00 6.93e-01 -1.0 7.87e-01 0.7 1.00e+00 1.00e+00f 1
9 2.9230803e+04 0.00e+00 3.83e-01 -1.7 8.01e-01 0.2 1.00e+00 1.00e+00f 1

iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls
10 2.8385271e+04 0.00e+00 2.69e-01 -1.7 1.17e+00 -0.3 1.00e+00 1.00e+00f 1
11 2.8124881e+04 0.00e+00 2.62e-01 -1.7 2.03e-01 0.1 1.00e+00 1.00e+00f 1
12 2.7372459e+04 0.00e+00 2.07e-01 -1.7 6.44e-01 -0.3 1.00e+00 1.00e+00f 1
13 2.7167859e+04 0.00e+00 1.78e-01 -1.7 1.92e-01 0.1 1.00e+00 1.00e+00f 1
14 2.6871675e+04 0.00e+00 2.11e-01 -2.5 9.21e-01 -0.4 1.00e+00 1.00e+00f 1
15 2.6749431e+04 0.00e+00 7.56e-02 -2.5 9.37e-01 0.0 1.00e+00 5.00e-01f 2
16 2.6736752e+04 0.00e+00 6.73e-02 -2.5 3.04e-02 0.5 1.00e+00 1.00e+00f 1
17 2.6706137e+04 0.00e+00 4.90e-02 -2.5 1.15e-01 -0.0 1.00e+00 1.00e+00f 1
18 2.6702789e+04 0.00e+00 4.36e-02 -2.5 2.14e-02 0.4 1.00e+00 1.00e+00f 1
19 2.6694444e+04 0.00e+00 2.52e-02 -2.5 7.31e-02 -0.1 1.00e+00 1.00e+00f 1

iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls
20 2.6693514e+04 0.00e+00 2.19e-02 -3.8 1.26e-02 0.4 1.00e+00 1.00e+00f 1
21 2.6691281e+04 0.00e+00 1.02e-02 -3.8 4.46e-02 -0.1 1.00e+00 1.00e+00f 1
22 2.6691103e+04 0.00e+00 8.65e-03 -3.8 5.83e-03 0.3 1.00e+00 1.00e+00f 1
23 2.6690726e+04 0.00e+00 3.14e-03 -3.8 2.12e-02 -0.2 1.00e+00 1.00e+00f 1
24 2.6690695e+04 0.00e+00 2.59e-03 -3.8 2.07e-03 0.3 1.00e+00 1.00e+00f 1
25 2.6690680e+04 0.00e+00 2.07e-03 -3.8 2.19e-02 -0.2 1.00e+00 2.50e-01f 3
26 2.6690666e+04 0.00e+00 1.66e-03 -3.8 1.56e-03 0.2 1.00e+00 1.00e+00f 1
27 2.6690664e+04 0.00e+00 1.64e-03 -3.8 1.17e-01 -0.3 1.00e+00 1.56e-02f 7
28 2.6690658e+04 0.00e+00 1.26e-03 -3.8 1.43e-03 0.1 1.00e+00 1.00e+00f 1
29 2.6690656e+04 0.00e+00 1.17e-03 -5.7 3.62e-04 0.6 1.00e+00 1.00e+00f 1

iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls
30 2.6690653e+04 0.00e+00 8.61e-04 -5.7 1.18e-03 0.1 1.00e+00 1.00e+00f 1
31 2.6690652e+04 0.00e+00 7.88e-04 -5.7 2.80e-04 0.5 1.00e+00 1.00e+00f 1
32 2.6690650e+04 0.00e+00 5.46e-04 -5.7 9.26e-04 0.0 1.00e+00 1.00e+00f 1
33 2.6690650e+04 0.00e+00 4.93e-04 -5.7 2.02e-04 0.5 1.00e+00 1.00e+00f 1
34 2.6690649e+04 0.00e+00 3.16e-04 -5.7 6.78e-04 -0.0 1.00e+00 1.00e+00f 1
35 2.6690649e+04 0.00e+00 2.81e-04 -5.7 1.33e-04 0.4 1.00e+00 1.00e+00f 1
36 2.6690648e+04 0.00e+00 1.62e-04 -5.7 4.55e-04 -0.1 1.00e+00 1.00e+00f 1

32

37 2.6690648e+04 0.00e+00 1.42e-04 -5.7 7.77e-05 0.4 1.00e+00 1.00e+00f 1
38 2.6690648e+04 0.00e+00 7.03e-05 -5.7 2.72e-04 -0.1 1.00e+00 1.00e+00f 1
39 2.6690648e+04 0.00e+00 6.02e-05 -5.7 3.86e-05 0.3 1.00e+00 1.00e+00f 1

iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls
40 2.6690648e+04 0.00e+00 2.38e-05 -5.7 1.39e-04 -0.2 1.00e+00 1.00e+00f 1
41 2.6690648e+04 0.00e+00 1.99e-05 -5.7 1.50e-05 0.3 1.00e+00 1.00e+00f 1
42 2.6690648e+04 0.00e+00 5.28e-06 -5.7 5.60e-05 -0.2 1.00e+00 1.00e+00f 1
43 2.6690648e+04 0.00e+00 4.28e-06 -8.6 3.81e-06 0.2 1.00e+00 1.00e+00f 1
44 2.6690648e+04 0.00e+00 3.25e-06 -8.6 1.49e-05 -0.3 1.00e+00 5.00e-01f 2
45 2.6690648e+04 0.00e+00 1.82e-06 -8.6 3.46e-06 0.2 1.00e+00 1.00e+00f 1
46 2.6690648e+04 0.00e+00 1.69e-06 -8.6 5.01e-07 0.6 1.00e+00 1.00e+00f 1
47 2.6690648e+04 0.00e+00 1.27e-06 -8.6 1.63e-06 0.1 1.00e+00 1.00e+00f 1
48 2.6690648e+04 0.00e+00 1.16e-06 -8.6 3.95e-07 0.5 1.00e+00 1.00e+00f 1
49 2.6690648e+04 0.00e+00 8.23e-07 -8.6 1.30e-06 0.1 1.00e+00 1.00e+00f 1

iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls
50 2.6690648e+04 0.00e+00 7.47e-07 -8.6 2.92e-07 0.5 1.00e+00 1.00e+00f 1
51 2.6690648e+04 0.00e+00 4.92e-07 -8.6 9.75e-07 0.0 1.00e+00 1.00e+00f 1
52 2.6690648e+04 0.00e+00 4.40e-07 -8.6 1.98e-07 0.4 1.00e+00 1.00e+00f 1
53 2.6690648e+04 0.00e+00 2.63e-07 -8.6 6.75e-07 -0.0 1.00e+00 1.00e+00f 1
54 2.6690648e+04 0.00e+00 2.32e-07 -8.6 1.21e-07 0.4 1.00e+00 1.00e+00f 1
55 2.6690648e+04 0.00e+00 1.22e-07 -8.6 4.21e-07 -0.1 1.00e+00 1.00e+00f 1
56 2.6690648e+04 0.00e+00 1.05e-07 -8.6 6.39e-08 0.3 1.00e+00 1.00e+00f 1
57 2.6690648e+04 0.00e+00 4.53e-08 -8.6 2.28e-07 -0.1 1.00e+00 1.00e+00f 1
58 2.6690648e+04 0.00e+00 3.82e-08 -8.6 2.72e-08 0.3 1.00e+00 1.00e+00f 1
59 2.6690648e+04 0.00e+00 1.19e-08 -8.6 1.00e-07 -0.2 1.00e+00 1.00e+00f 1

iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls
60 2.6690648e+04 0.00e+00 9.76e-09 -9.0 8.21e-09 0.2 1.00e+00 1.00e+00f 1

Number of Iterations...: 60

(scaled) (unscaled)
Objective...: 8.5074714157088174e+00 2.6690648196634054e+04
Dual infeasibility...: 9.7569600551044561e-09 3.0610692128632544e-05
Constraint violation...: 0.0000000000000000e+00 0.0000000000000000e+00
Complementarity...: 9.0909090949984745e-10 2.8521078071934833e-06
Overall NLP error...: 9.7569600551044561e-09 3.0610692128632544e-05

Number of objective function evaluations = 87
Number of objective gradient evaluations = 61
Number of equality constraint evaluations = 0
Number of inequality constraint evaluations = 0
Number of equality constraint Jacobian evaluations = 0
Number of inequality constraint Jacobian evaluations = 0
Number of Lagrangian Hessian evaluations = 60
Total CPU secs in IPOPT (w/o function evaluations) = 0.046
Total CPU secs in NLP function evaluations = 0.169

33

EXIT: Optimal Solution Found.
termination_status(m) = LOCALLY_SOLVED::TerminationStatusCode = 4
=

WARNING: using Distributions.mode in module Main conflicts with an existing identifier.

4.493062898788303, mean(data) = 4.493062936089179
ˆ2 = 12.185571328763903, var(data) = 12.186789996356879

3 Linear Constrained Problems (LPs)

• Very similar to before, just that both objective and constraints are linear.

min
x

cTx

subject to w(i)T
LE x ≤ bi for i ∈ 1, 2, 3, . . .

w(j)T
GE x ≥ bj for j ∈ 1, 2, 3, . . .

w(k)T
EQ x = bk for k ∈ 1, 2, 3, . . .

• Our initial JuMP example was of that sort.

3.0.1 Standard Form

• Usually LPs are given in standard form
• All constraints are less-than inequalities
• All choice variables are non-negative.

min
x

cTx

subject to Ax ≤ b
x ≥ 0

• Greater-than inequality constraints are inverted
• equality constraints are split into two
• x = x+ − x− and we constrain both components to be positive.

3.0.2 Equality Form

min
x

cTx

subject to Ax = b
x ≥ 0

• Can transform standard into equality form

34

Ax ≤ b→ Ax + s = b, s ≥ 0

• equality constraints are split into two
• x = x+ − x− and we constrain both components to be positive.

3.0.3 Solving LPs

• Simplex Algorithm operates on Equality Form
• Moving from one vertex to the next of the feasible set, this is guaranteed to find the optimal

solution if the problem is bounded.

3.1 A Cannery Problem

• A can factory (a cannery) has plants in Seattle and San Diego
• They need to decide how to serve markets New-York, Chicago, Topeka
• Firm wants to

1. minimize shipping costs
2. shipments cannot exceed capacity
3. shipments must satisfy demand

• Formalize that!
• Plant capacity capi, demands dj and transport costs from plant i to market j, disti,jc are all

given.
• Let x be a matrix with element xi,j for number of cans shipped from i to j.

3.2 From Maths . . .

min
x

2

∑
i=1

3

∑
j=1

disti,jc× xi,j

subject to
3

∑
j=1

x(i, j) ≤ capi, ∀i

2

∑
i=1

x(i, j) ≥ dj, ∀j

In [7]: # ... to JuMP
https://github.com/JuliaOpt/JuMP.jl/blob/release-0.19/examples/cannery.jl
Copyright 2017, Iain Dunning, Joey Huchette, Miles Lubin, and contributors
This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at http://mozilla.org/MPL/2.0/.
###
JuMP
An algebraic modeling language for Julia
See http://github.com/JuliaOpt/JuMP.jl
###

35

using JuMP, GLPK, Test
const MOI = JuMP.MathOptInterface

"""
example_cannery(; verbose = true)

JuMP implementation of the cannery problem from Dantzig, Linear Programming and
Extensions, Princeton University Press, Princeton, NJ, 1963.
Author: Louis Luangkesorn
Date: January 30, 2015
"""
function example_cannery(; verbose = true)

plants = ["Seattle", "San-Diego"]
markets = ["New-York", "Chicago", "Topeka"]

Capacity and demand in cases.
capacity = [350, 600]
demand = [300, 300, 300]

Distance in thousand miles.
distance = [2.5 1.7 1.8; 2.5 1.8 1.4]

Cost per case per thousand miles.
freight = 90

num_plants = length(plants)
num_markets = length(markets)

cannery = Model(with_optimizer(GLPK.Optimizer))

@variable(cannery, ship[1:num_plants, 1:num_markets] >= 0)

Ship no more than plant capacity
@constraint(cannery, capacity_con[i in 1:num_plants],

sum(ship[i,j] for j in 1:num_markets) <= capacity[i]
)

Ship at least market demand
@constraint(cannery, demand_con[j in 1:num_markets],

sum(ship[i,j] for i in 1:num_plants) >= demand[j]
)

Minimize transporatation cost
@objective(cannery, Min, sum(distance[i, j] * freight * ship[i, j]

for i in 1:num_plants, j in 1:num_markets)
)

JuMP.optimize!(cannery)

36

if verbose
println("RESULTS:")
for i in 1:num_plants

for j in 1:num_markets
println(" $(plants[i]) $(markets[j]) = $(JuMP.value(ship[i, j]))")

end
end

end

@assert JuMP.termination_status(cannery) == MOI.OPTIMAL
@assert JuMP.primal_status(cannery) == MOI.FEASIBLE_POINT
@assert JuMP.objective_value(cannery) == 151200.0

end
example_cannery()

RESULTS:
Seattle New-York = 50.0
Seattle Chicago = 300.0
Seattle Topeka = 0.0
San-Diego New-York = 250.0
San-Diego Chicago = 0.0
San-Diego Topeka = 300.0

4 Discrete Optimization / Integer Programming

• Here the choice variable is contrained to come from a discrete set X .
• If this set is X = N, we have an integer program
• If only some x have to be discrete, this is a mixed integer program

4.1 Example

min
x

x1 + x2

subject to ||x|| ≤ 2
x ∈N

• continuous optimum is (−
√

2,−
√

2) and objective is y = −2
√

2 = −2.828
• Integer constrained problem is only delivering y = −2, and x∗ ∈ (−2, 0), (−1,−1), (0,−2)

In [8]: x = -3:0.01:3
dx = repeat(range(-3,stop = 3, length = 7),1,7)
contourf(x,x,(x,y)->x+y,color=:blues)
scatter!(dx,dx',legend=false,markercolor=:white)
plot!(x->sqrt(4-x^2),-2,2,c=:white)
plot!(x->-sqrt(4-x^2),-2,2,c=:white)
scatter!([-2,-1,0],[0,-1,-2],c=:red)
scatter!([-sqrt(2)],[-sqrt(2)],c=:red,markershape=:cross,markersize=9)

37

Out[8]:

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

- 5.0

- 2.5

0

2.5

5.0

4.2 Rounding

• One solution is to just round the continuous solution to the nearest integer
• We compute the relaxed problem, i.e. the one where x is continuous.
• Then we round up or down.
• Can go terribly wrong.

4.3 Cutting Planes

• This is an exact method
• We solve the relaxed problem first.
• Then we add linear constraints that result in the solution becoming integral.

4.4 Branch and Bound

• This enumerates all possible soultions.
• Branch and bound does this, without having to compute all of them.

4.5 Example: The Knapsack Problem

• We are packing our knapsack for a trip but only have space for the most valuable items.
• We have xi = 0 if item i is not in the sack, 1 else.

38

min
x
−

n

∑
i=1

vixi

s.t.
n

∑
i=1

wixi ≤ wmax

wi ∈N+,vi ∈ R

• If ther are n items, we have 2n possible design vectors.
• But there is a useful recursive relationship.
• If we solved n− 1 knapsack problems so far and deliberate about item n

– If it’s not worth including item n, then the solution is the knapsack problem for n− 1
items and capacity wmax

– If it IS worth including it: solution will have value of knapsack with n − 1 items and
reduced capacity, plus the value of the new item

• This is dynamic progamming.

4.5.1 Knacksack Recursion

• In particular, the recursion looks like this:

knapsack (i, wmax) =


0 ifi = 0
knapsack (i− 1, wmax) ifwi > wmax

max

{
knapsack (i− 1, wmax) (discard new item)
knapsack (i− 1, wmax − wi) + vi (include new item)

else.

In [6]: # Copyright 2017, Iain Dunning, Joey Huchette, Miles Lubin, and contributors
This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at http://mozilla.org/MPL/2.0/.
###
JuMP
An algebraic modeling langauge for Julia
See http://github.com/JuliaOpt/JuMP.jl
###
knapsack.jl
#
Solves a simple knapsack problem:
max sum(p_j x_j)
st sum(w_j x_j) <= C
x binary
###

using JuMP, Cbc, LinearAlgebra

39

let

Maximization problem
m = Model(with_optimizer(Cbc.Optimizer))

@variable(m, x[1:5], Bin)

profit = [5, 3, 2, 7, 4]
weight = [2, 8, 4, 2, 5]
capacity = 10

Objective: maximize profit
@objective(m, Max, dot(profit, x))

Constraint: can carry all
@constraint(m, dot(weight, x) <= capacity)

Solve problem using MIP solver
optimize!(m)

println("Objective is: ", JuMP.objective_value(m))
println("Solution is:")
for i = 1:5

print("x[$i] = ", JuMP.value(x[i]))
println(", p[$i]/w[$i] = ", profit[i]/weight[i])

end
end

Objective is: 16.0
Solution is:
x[1] = 1.0, p[1]/w[1] = 2.5
x[2] = 0.0, p[2]/w[2] = 0.375
x[3] = 0.0, p[3]/w[3] = 0.5
x[4] = 1.0, p[4]/w[4] = 3.5
x[5] = 1.0, p[5]/w[5] = 0.8
Welcome to the CBC MILP Solver
Version: 2.9.9
Build Date: Dec 31 2018

command line - Cbc_C_Interface -solve -quit (default strategy 1)
Continuous objective value is 16.5 - 0.00 seconds
Cgl0004I processed model has 1 rows, 5 columns (5 integer (5 of which binary)) and 5 elements
Cutoff increment increased from 1e-05 to 0.9999
Cbc0038I Initial state - 1 integers unsatisfied sum - 0.25
Cbc0038I Solution found of -16
Cbc0038I Before mini branch and bound, 4 integers at bound fixed and 0 continuous
Cbc0038I Mini branch and bound did not improve solution (0.00 seconds)
Cbc0038I After 0.00 seconds - Feasibility pump exiting with objective of -16 - took 0.00 seconds

40

Cbc0012I Integer solution of -16 found by feasibility pump after 0 iterations and 0 nodes (0.00 seconds)
Cbc0001I Search completed - best objective -16, took 1 iterations and 0 nodes (0.00 seconds)
Cbc0035I Maximum depth 0, 4 variables fixed on reduced cost
Cuts at root node changed objective from -16.5 to -16
Probing was tried 0 times and created 0 cuts of which 0 were active after adding rounds of cuts (0.000 seconds)
Gomory was tried 0 times and created 0 cuts of which 0 were active after adding rounds of cuts (0.000 seconds)
Knapsack was tried 0 times and created 0 cuts of which 0 were active after adding rounds of cuts (0.000 seconds)
Clique was tried 0 times and created 0 cuts of which 0 were active after adding rounds of cuts (0.000 seconds)
MixedIntegerRounding2 was tried 0 times and created 0 cuts of which 0 were active after adding rounds of cuts (0.000 seconds)
FlowCover was tried 0 times and created 0 cuts of which 0 were active after adding rounds of cuts (0.000 seconds)
TwoMirCuts was tried 0 times and created 0 cuts of which 0 were active after adding rounds of cuts (0.000 seconds)

Result - Optimal solution found

Objective value: 16.00000000
Enumerated nodes: 0
Total iterations: 1
Time (CPU seconds): 0.00
Time (Wallclock seconds): 0.02

Total time (CPU seconds): 0.00 (Wallclock seconds): 0.03

In []:

41

