SciencesPo Computational Economics
Spring 2019

Florian Oswald

April 15, 2019

0.0.1 Numerical Integration

ScPo Computational Economics 2018

0.1

0.2

Numerical Approximation of Integrals

We will focus on methods that represent integrals as weighted sums.
The typical representation will look like:

N is the dimensionality of the integration problem.

G : RN s R is the function we want to integrate wrt € € RV.

w is a density function s.t. [, w(e)de = 1.

w are weights such that (most of the time) ij':l w;j=1.

We will look at normal shocks € ~ N (O, In)

in that case, w(e) = (2r) N2 exp (—3€Te)

Iy is the n by n identity matrix, i.e. there is no correlation among the shocks for now.

Other random processes will require different weighting functions, but the principle is iden-
tical.

For now, let’s say that N =1

Quadrature Rules
We focus exclusively on those and leave Simpson and Newton Cowtes formulas out.

— This is because Quadrature is the method that in many situations gives highes accuracy
with lowest computational cost.

Quadrature provides a rule to compute weights w; and nodes ;.
There are many different quadrature rules.
They differ in their domain and weighting function.

0.4

https://en.wikipedia.org/wiki/Gaussian_quadrature
In general, we can convert our function domain to a rule-specific domain with change of
variables.

Gauss-Hermite: Expectation of a Normally Distributed Variable

There are many different rules, all specific to a certain random process.
Gauss-Hermite is designed for an integral of the form

oo,
/ e G(x)dx
—00
and where we would approximate
oo, n
/ e f(x)dx =) wiG(x;)
- i=1
Now, let’s say we want to approximate the expected value of function f when it’s argument

z ~ N(u,0?): - .
BN = [= exp (~E5) sl

Gauss-Hermite: Expectation of a Normally Distributed Variable

The rule is defined for x however. We need to transform z:

(z—p)?
xzﬁéz:ﬁax%—y

This gives us now (just plug in for z)
T]
EfE) = [Jmow (-37) f(Vaox+ e
And thus, our approximation to this, using weights w; and nodes x; is
L1
E[f(2)] =]Z; ﬁw]‘f(\@ij +H)

Using Quadrature in Julia

® https://github.com/ajt60gaibb/FastGaussQuadrature. jl

In [1]: #Pkg.add("FastGaussQuadrature")

using FastGaussQuadrature
np = 3

rules = Dict("hermite" => gausshermite(np),
"chebyshev" => gausschebyshev(up),

2

https://en.wikipedia.org/wiki/Gaussian_quadrature
https://github.com/ajt60gaibb/FastGaussQuadrature.jl

"legendre" => gausslegendre(np),
"lobatto" => gausslobatto(up))

using DataFrames

integ = DataFrame(Rule=Symbol[Symbol(x) for x in keys(rules)],nodes=[x[1] for x in val

INFO: WARNING: Method definition midpoints(Base.Range{’
WARNING: Method definition midpoints(AbstractArray{T, 1} where T) in module Base at deprecated

Out[1]: 4E3 DataFrames.DataFrame. Omitted printing of 1 columns

Row Rule nodes

1 lobatto [-1.0, 0.0, 1.0]

2 hermite [-1.22474, -8.88178e-16, 1.22474]
3 legendre [-0.774597, 0.0, 0.774597]

4 chebyshev [-0.866025, 6.12323e-17, 0.866025]

Quadrature in more dimensions: Product Rule

e If we have N > 1, we can use the product rule: this just takes the kronecker product of all
univariate rules.

¢ The what?

In [2]: A = [1 2;3 4]
B = [1;10]
kron(A,B)
kron(B,A)

Out[2]: 4E2 Array{Int64,2}:

1 2
3 4
10 20
30 40

¢ This works well as long as N is not too large. The number of required function evaluations
grows exponentially.

)i IN
EG(e)) = [Gleyw(e)de = Y -+) w) - wNGle], ... e})
=l jn=l
where w}] stands for weight index j; in dimension 1, same for €.
¢ Total number of nodes: | = [1J> - - - Jn, and J; can differ from J.

0.4.1 Example for N =3

* Suppose we have e ~N (0,1),i = 1,2, 3 as three uncorrelated random variables.
¢ Let’s take | = 3 points in all dimensions, so that in total we have JN =27 points.

3

¢ We have the nodes and weights from before in rules["hermite"].

In [3]: rules["hermite"] [1]
repeat (rules["hermite"] [1],inner=[1],outer=[9])

Out[3]: 27-element Array{Float64,1}:
-1.22474
-8.88178e-16

1.22474
-1.22474
-8.88178e-16

1.22474
-1.22474
-8.88178e-16

1.22474
-1.22474
-8.88178e-16

1.22474
-1.22474

-1.22474
-8.88178e-16
1.22474
-1.22474
-8.88178e-16
1.22474
-1.22474
-8.88178e-16
1.22474
-1.22474
-8.88178e-16
1.22474

In [4]: nodes = Any[]
push! (nodes,repeat(rules["hermite"] [1],inner=[1],outer=[9])) # diml
push! (nodes,repeat (rules["hermite"] [1],inner=[3],outer=[3]1)) # dim2
push! (nodes,repeat (rules["hermite"] [1],inner=[9],outer=[1]1)) # dim3
weights = kron(rules["hermite"] [2] ,kron(rules["hermite"] [2],rules["hermite"] [2]))
df = hcat(DataFrame(weights=weights) ,DataFrame(nodes, [:diml, :dim2,:dim3]))

Out[4] : 27E4 DataFrames.DataFrame

Row weights diml dim2 dim3

1 0.0257793 -1.22474 -1.22474 -1.22474
2 0.103117 -8.88178e-16 -1.22474 -1.22474
3 0.0257793 1.22474 -1.22474 -1.22474
4 0.103117 -1.22474 -8.88178e-16 -1.22474
5 0.412469 -8.88178e-16 -8.88178e-16 -1.22474
6 0.103117 1.22474 -8.88178e-16 -1.22474

7 0.0257793 -1.22474 1.22474 -1.22474

8 0.103117 -8.88178e-16 1.22474 -1.22474

9 0.0257793 1.22474 1.22474 -1.22474

10 0.103117 -1.22474 -1.22474 -8.88178e-16
11 0.412469 -8.88178e-16 -1.22474 -8.88178e-16
16 0.103117 -1.22474 1.22474 -8.88178e-16
17 0.412469 -8.88178e-16 1.22474 -8.88178e-16
18 0.103117 1.22474 1.22474 -8.88178e-16
19 0.0257793 -1.22474 -1.22474 1.22474

20 0.103117 -8.88178e-16 -1.22474 1.22474

21 0.0257793 1.22474 -1.22474 1.22474

22 0.103117 -1.22474 -8.88178e-16 1.22474

23 0.412469 -8.88178e-16 -8.88178e-16 1.22474

24 0.103117 1.22474 -8.88178e-16 1.22474

256 0.0257793 -1.22474 1.22474 1.22474

26 0.103117 -8.88178e-16 1.22474 1.22474

27 0.0257793 1.22474 1.22474 1.22474

¢ Imagine you had a function g defined on those 3 dims: in order to approximate the integral,
you would have to evaluate g at all combinations of dimx, multiply with the corresponding
weight, and sum.

0.4.2 Alternatives to the Product Rule

¢ Monomial Rules: They grow only linearly.
¢ Please refer to [juddbook] [1] for more details.

0.5 Monte Carlo Integration

* A widely used method is to just draw N points randomly from the space of the shock €, and
to assign equal weights w; = % to all of them.
¢ The expectation is then

¢ This in general a very inefficient method.

¢ Particularly in more than 1 dimensions, the number of points needed for good accuracy is
very large.

* Monte Carlo has a rate of convergence of O (n~%°)

0.6 Quasi Monte Carlo Integration

¢ Uses non-product techniques to construct a grid of uniformly spaced points.

¢ The researcher controlls the number of points.

¢ We need to construct equidistributed points.

¢ Typically one uses a low-discrepancy sequence of points, e.g. the Weyl sequence:

* x, = nv where v is an irrational number and {} stands for the fractional part of a number.

forv = /2,
xp = {1V2} = {1.4142} = 0.4142, x, = {2V/2} = {2.8242} = 0.8242, ...

Other low-discrepancy sequences are Niederreiter, Haber, Baker or Sobol.
Quasi Monte Carlo has a rate of convergence of close to O(n 1)
The wikipedia entry is good.

In [5]: # Pkg.add("Sobol")
using Sobol
using Plots
s = SobolSeq(2)
p = hcat([next(s) for i = 1:1024]...)"
scatter(pl:,1], pl[:,2], m=(:red,:dot,1.0),legend=false)

ArgumentError: Module Sobol not found in current path.
Run “Pkg.add("Sobol")™ to install the Sobol package.

Stacktrace:
[1] _require(::Symbol) at ./loading.jl:428
[2] require(::Symbol) at ./loading.jl:398

[3] include_string(::String, ::String) at ./loading.jl:515

Correlated Shocks

¢ We often face situations where the shocks are in fact correlated.

— One very typical case is an AR1 process:

Zir] = Pzt + €4, € ~ N(O,(rz)

The general case is again:

)i N

EG(e)] = [, Glew(e)den Y -+), wh - whGlel,..e))
]

ih1=1 iN=1

Now € ~ N(u,X) where X is an N by N variance-covariance matrix.
The multivariate density is

wle) = (27) Ner(z) 2exp (e~) Te)

We need to perform a change of variables before we can integrate this.

6

https://en.wikipedia.org/wiki/Quasi-Monte_Carlo_method

¢ Given X is symmetric and positive semi-definite, it has a Cholesky decomposition,
~=00"

where () is a lower-triangular with strictly positive entries.
¢ The linear change of variables is then

v=0"(e—p)

¢ Plugging this in gives
/

Y wG(Qj+p) = Zw]
i=1

where v ~ N(0, Iy).
* So, we can follow the exact same steps as with the uncorrelated shocks, but need to adapt
the nodes.

0.7 References

¢ The Integration part of these slides are based on [@maliar-maliar] [2] chapter 5

References

[1] Kenneth L. Judd. Numerical methods in economics. The MIT Press, 1998.

[2] Lilia Maliar and Serguei Maliar. Numerical methods for large scale dynamic economic models.
Handbook of Computational Economics, 3:325, 2013.

	Numerical Integration
	Numerical Approximation of Integrals
	Quadrature Rules
	Gauss-Hermite: Expectation of a Normally Distributed Variable
	Gauss-Hermite: Expectation of a Normally Distributed Variable
	Example for N=3
	Alternatives to the Product Rule

	Monte Carlo Integration
	Quasi Monte Carlo Integration
	References

