
SciencesPo Computational Economics
Spring 2019

Florian Oswald

April 15, 2019

0.0.1 Numerical Integration

ScPo Computational Economics 2018

0.1 Numerical Approximation of Integrals

• We will focus on methods that represent integrals as weighted sums.
• The typical representation will look like:

E[G(ϵ)] =
∫

RN
G(ϵ)w(ϵ)dϵ ≈

J

∑
j=1

ωjG(ϵj)

E[G(ϵ)] =
∫

RN
G(ϵ)w(ϵ)dϵ ≈

J

∑
j=1

ωjG(ϵj)

• N is the dimensionality of the integration problem.
• G : RN 7→ R is the function we want to integrate wrt ϵ ∈ RN .
• w is a density function s.t.

∫
Rn w(ϵ)dϵ = 1.

• ω are weights such that (most of the time) ∑J
j=1 ωj = 1.

• We will look at normal shocks ϵ ∼ N(0N , IN)
• in that case, w(ϵ) = (2π)−N/2 exp

(
− 1

2 ϵTϵ
)

• IN is the n by n identity matrix, i.e. there is no correlation among the shocks for now.
• Other random processes will require different weighting functions, but the principle is iden-

tical.
• For now, let’s say that N = 1

0.2 Quadrature Rules

• We focus exclusively on those and leave Simpson and Newton Cowtes formulas out.

– This is because Quadrature is the method that in many situations gives highes accuracy
with lowest computational cost.

• Quadrature provides a rule to compute weights wj and nodes ϵj.
• There are many different quadrature rules.
• They differ in their domain and weighting function.

1

• https://en.wikipedia.org/wiki/Gaussian_quadrature
• In general, we can convert our function domain to a rule-specific domain with change of

variables.

0.3 Gauss-Hermite: Expectation of a Normally Distributed Variable

• There are many different rules, all specific to a certain random process.
• Gauss-Hermite is designed for an integral of the form∫ +∞

−∞
e−x2

G(x)dx

and where we would approximate∫ +∞

−∞
e−x2

f (x)dx ≈
n

∑
i=1

ωiG(xi)

• Now, let’s say we want to approximate the expected value of function f when it’s argument
z ∼ N(µ, σ2):

E[f (z)] =
∫ +∞

−∞

1
σ
√

2π
exp

(
− (z − µ)2

2σ2

)
f (z)dz

0.4 Gauss-Hermite: Expectation of a Normally Distributed Variable

• The rule is defined for x however. We need to transform z:

x =
(z − µ)2

2σ2 ⇒ z =
√

2σx + µ

• This gives us now (just plug in for z)

E[f (z)] =
∫ +∞

−∞

1√
π

exp
(
−x2) f (

√
2σx + µ)dx

• And thus, our approximation to this, using weights ωi and nodes xi is

E[f (z)] ≈
J

∑
j=1

1√
π

ωj f (
√

2σxj + µ)

Using Quadrature in Julia

• https://github.com/ajt60gaibb/FastGaussQuadrature.jl

In [1]: #Pkg.add("FastGaussQuadrature")

using FastGaussQuadrature

np = 3

rules = Dict("hermite" => gausshermite(np),
"chebyshev" => gausschebyshev(np),

2

https://en.wikipedia.org/wiki/Gaussian_quadrature
https://github.com/ajt60gaibb/FastGaussQuadrature.jl

"legendre" => gausslegendre(np),
"lobatto" => gausslobatto(np))

using DataFrames

integ = DataFrame(Rule=Symbol[Symbol(x) for x in keys(rules)],nodes=[x[1] for x in values(rules)],weights=[x[2] for x in values(rules)])

INFO: Precompiling module FastGaussQuadrature.WARNING: Method definition midpoints(Base.Range{T} where T) in module Base at deprecated.jl:56 overwritten in module StatsBase at /Users/florian.oswald/.julia/v0.6/StatsBase/src/hist.jl:535.
WARNING: Method definition midpoints(AbstractArray{T, 1} where T) in module Base at deprecated.jl:56 overwritten in module StatsBase at /Users/florian.oswald/.julia/v0.6/StatsBase/src/hist.jl:533.

Out[1]: 4Œ3 DataFrames.DataFrame. Omitted printing of 1 columns
Row Rule nodes

1 lobatto [-1.0, 0.0, 1.0]
2 hermite [-1.22474, -8.88178e-16, 1.22474]
3 legendre [-0.774597, 0.0, 0.774597]
4 chebyshev [-0.866025, 6.12323e-17, 0.866025]

Quadrature in more dimensions: Product Rule

• If we have N > 1, we can use the product rule: this just takes the kronecker product of all
univariate rules.

• The what?

In [2]: A = [1 2;3 4]
B = [1;10]
kron(A,B)
kron(B,A)

Out[2]: 4Œ2 Array{Int64,2}:
1 2
3 4

10 20
30 40

• This works well as long as N is not too large. The number of required function evaluations
grows exponentially.

E[G(ϵ)] =
∫

RN
G(ϵ)w(ϵ)dϵ ≈

J1

∑
j1=1

· · ·
JN

∑
jN=1

ω1
j1 · · ·ωN

jN
G(ϵ1

j1 , . . . , ϵN
jN
)

where ω1
j1 stands for weight index j1 in dimension 1, same for ϵ.

• Total number of nodes: J = J1 J2 · · · JN , and Ji can differ from Jk.

0.4.1 Example for N = 3

• Suppose we have ϵi ∼ N(0, 1), i = 1, 2, 3 as three uncorrelated random variables.
• Let’s take J = 3 points in all dimensions, so that in total we have JN = 27 points.

3

• We have the nodes and weights from before in rules["hermite"].

In [3]: rules["hermite"][1]
repeat(rules["hermite"][1],inner=[1],outer=[9])

Out[3]: 27-element Array{Float64,1}:
-1.22474
-8.88178e-16
1.22474

-1.22474
-8.88178e-16
1.22474

-1.22474
-8.88178e-16
1.22474

-1.22474
-8.88178e-16
1.22474

-1.22474

-1.22474
-8.88178e-16
1.22474

-1.22474
-8.88178e-16
1.22474

-1.22474
-8.88178e-16
1.22474

-1.22474
-8.88178e-16
1.22474

In [4]: nodes = Any[]
push!(nodes,repeat(rules["hermite"][1],inner=[1],outer=[9])) # dim1
push!(nodes,repeat(rules["hermite"][1],inner=[3],outer=[3])) # dim2
push!(nodes,repeat(rules["hermite"][1],inner=[9],outer=[1])) # dim3
weights = kron(rules["hermite"][2],kron(rules["hermite"][2],rules["hermite"][2]))
df = hcat(DataFrame(weights=weights),DataFrame(nodes,[:dim1,:dim2,:dim3]))

Out[4]: 27Œ4 DataFrames.DataFrame
Row weights dim1 dim2 dim3

1 0.0257793 -1.22474 -1.22474 -1.22474
2 0.103117 -8.88178e-16 -1.22474 -1.22474
3 0.0257793 1.22474 -1.22474 -1.22474
4 0.103117 -1.22474 -8.88178e-16 -1.22474
5 0.412469 -8.88178e-16 -8.88178e-16 -1.22474
6 0.103117 1.22474 -8.88178e-16 -1.22474

4

7 0.0257793 -1.22474 1.22474 -1.22474
8 0.103117 -8.88178e-16 1.22474 -1.22474
9 0.0257793 1.22474 1.22474 -1.22474
10 0.103117 -1.22474 -1.22474 -8.88178e-16
11 0.412469 -8.88178e-16 -1.22474 -8.88178e-16

16 0.103117 -1.22474 1.22474 -8.88178e-16
17 0.412469 -8.88178e-16 1.22474 -8.88178e-16
18 0.103117 1.22474 1.22474 -8.88178e-16
19 0.0257793 -1.22474 -1.22474 1.22474
20 0.103117 -8.88178e-16 -1.22474 1.22474
21 0.0257793 1.22474 -1.22474 1.22474
22 0.103117 -1.22474 -8.88178e-16 1.22474
23 0.412469 -8.88178e-16 -8.88178e-16 1.22474
24 0.103117 1.22474 -8.88178e-16 1.22474
25 0.0257793 -1.22474 1.22474 1.22474
26 0.103117 -8.88178e-16 1.22474 1.22474
27 0.0257793 1.22474 1.22474 1.22474

• Imagine you had a function g defined on those 3 dims: in order to approximate the integral,
you would have to evaluate g at all combinations of dimx, multiply with the corresponding
weight, and sum.

0.4.2 Alternatives to the Product Rule

• Monomial Rules: They grow only linearly.
• Please refer to [juddbook] [1] for more details.

0.5 Monte Carlo Integration

• A widely used method is to just draw N points randomly from the space of the shock ϵ, and
to assign equal weights ωj =

1
N to all of them.

• The expectation is then

E[G(ϵ)] ≈ 1
N

N

∑
j=1

G(ϵj)

• This in general a very inefficient method.
• Particularly in more than 1 dimensions, the number of points needed for good accuracy is

very large.
• Monte Carlo has a rate of convergence of O(n−0.5)

0.6 Quasi Monte Carlo Integration

• Uses non-product techniques to construct a grid of uniformly spaced points.
• The researcher controlls the number of points.
• We need to construct equidistributed points.
• Typically one uses a low-discrepancy sequence of points, e.g. the Weyl sequence:

5

• xn = nv where v is an irrational number and {} stands for the fractional part of a number.
for v =

√
2,

x1 = {1
√

2} = {1.4142} = 0.4142, x2 = {2
√

2} = {2.8242} = 0.8242, ...

• Other low-discrepancy sequences are Niederreiter, Haber, Baker or Sobol.
• Quasi Monte Carlo has a rate of convergence of close to O(n−1)
• The wikipedia entry is good.

In [5]: # Pkg.add("Sobol")
using Sobol
using Plots
s = SobolSeq(2)
p = hcat([next(s) for i = 1:1024]...)'
scatter(p[:,1], p[:,2], m=(:red,:dot,1.0),legend=false)

ArgumentError: Module Sobol not found in current path.
Run `Pkg.add("Sobol")` to install the Sobol package.

Stacktrace:

[1] _require(::Symbol) at ./loading.jl:428

[2] require(::Symbol) at ./loading.jl:398

[3] include_string(::String, ::String) at ./loading.jl:515

Correlated Shocks

• We often face situations where the shocks are in fact correlated.

– One very typical case is an AR1 process:

zt+1 = ρzt + εt, ε ∼ N(0, σ2)

• The general case is again:

E[G(ϵ)] =
∫

RN
G(ϵ)w(ϵ)dϵ ≈

J1

∑
j1=1

· · ·
JN

∑
jN=1

ω1
j1 · · ·ωN

jN
G(ϵ1

j1 , . . . , ϵN
jN
)

• Now ϵ ∼ N(µ, Σ) where Σ is an N by N variance-covariance matrix.
• The multivariate density is

w(ϵ) = (2π)−N/2det(Σ)−1/2 exp
(
−1

2
(ϵ − µ)T(ϵ − µ)

)
• We need to perform a change of variables before we can integrate this.

6

https://en.wikipedia.org/wiki/Quasi-Monte_Carlo_method

• Given Σ is symmetric and positive semi-definite, it has a Cholesky decomposition,

Σ = ΩΩT

where Ω is a lower-triangular with strictly positive entries.
• The linear change of variables is then

v = Ω−1(ϵ − µ)

• Plugging this in gives
J

∑
j=1

ωjG(Ωvj + µ) ≡
J

∑
j=1

ωjG(ϵj)

where v ∼ N(0, IN).
• So, we can follow the exact same steps as with the uncorrelated shocks, but need to adapt

the nodes.

0.7 References

• The Integration part of these slides are based on [@maliar-maliar] [2] chapter 5

References

[1] Kenneth L. Judd. Numerical methods in economics. The MIT Press, 1998.

[2] Lilia Maliar and Serguei Maliar. Numerical methods for large scale dynamic economic models.
Handbook of Computational Economics, 3:325, 2013.

7

	Numerical Integration
	Numerical Approximation of Integrals
	Quadrature Rules
	Gauss-Hermite: Expectation of a Normally Distributed Variable
	Gauss-Hermite: Expectation of a Normally Distributed Variable
	Example for N=3
	Alternatives to the Product Rule

	Monte Carlo Integration
	Quasi Monte Carlo Integration
	References

