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0.2

Numerical Approximation of Integrals

We will focus on methods that represent integrals as weighted sums.
The typical representation will look like:

N is the dimensionality of the integration problem.

G : RN s R is the function we want to integrate wrt € € RV.

w is a density function s.t. [, w(e)de = 1.

w are weights such that (most of the time) ij':l w;j=1.

We will look at normal shocks € ~ N (O, In)

in that case, w(e) = (2r) N2 exp (—3€Te)

Iy is the n by n identity matrix, i.e. there is no correlation among the shocks for now.

Other random processes will require different weighting functions, but the principle is iden-
tical.

For now, let’s say that N =1

Quadrature Rules
We focus exclusively on those and leave Simpson and Newton Cowtes formulas out.

— This is because Quadrature is the method that in many situations gives highes accuracy
with lowest computational cost.

Quadrature provides a rule to compute weights w; and nodes ;.
There are many different quadrature rules.
They differ in their domain and weighting function.



0.4

https://en.wikipedia.org/wiki/Gaussian_quadrature
In general, we can convert our function domain to a rule-specific domain with change of
variables.

Gauss-Hermite: Expectation of a Normally Distributed Variable

There are many different rules, all specific to a certain random process.
Gauss-Hermite is designed for an integral of the form

oo,
/ e G(x)dx
—00
and where we would approximate
oo, n
/ e f(x)dx = ) wiG(x;)
- i=1
Now, let’s say we want to approximate the expected value of function f when it’s argument

z ~ N(u,0?): - .
BN = [ = exp (~E5 ) sl

Gauss-Hermite: Expectation of a Normally Distributed Variable

The rule is defined for x however. We need to transform z:

(z—p)?
xzﬁéz:ﬁax%—y

This gives us now (just plug in for z)
T ]
EfE) = [ Jmow (-37) f(Vaox+ e
And thus, our approximation to this, using weights w; and nodes x; is
L1
E[f(2)] = ]Z; ﬁw]‘f(\@ij +H)

## Using Quadrature in Julia

® https://github.com/ajt60gaibb/FastGaussQuadrature. jl

In [1]: #Pkg.add("FastGaussQuadrature")

using FastGaussQuadrature
np = 3

rules = Dict("hermite" => gausshermite(np),
"chebyshev" => gausschebyshev(up),
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"legendre" => gausslegendre(np),
"lobatto" => gausslobatto(up))

using DataFrames

integ = DataFrame(Rule=Symbol[Symbol(x) for x in keys(rules)],nodes=[x[1] for x in val

INFO: WARNING: Method definition midpoints(Base.Range{’
WARNING: Method definition midpoints(AbstractArray{T, 1} where T) in module Base at deprecated

Out[1]: 4E3 DataFrames.DataFrame. Omitted printing of 1 columns

Row Rule nodes

1 lobatto [-1.0, 0.0, 1.0]

2 hermite [-1.22474, -8.88178e-16, 1.22474]
3 legendre [-0.774597, 0.0, 0.774597]

4 chebyshev [-0.866025, 6.12323e-17, 0.866025]

## Quadrature in more dimensions: Product Rule

e If we have N > 1, we can use the product rule: this just takes the kronecker product of all
univariate rules.

¢ The what?

In [2]: A = [1 2;3 4]
B = [1;10]
kron(A,B)
kron(B,A)

Out[2]: 4E2 Array{Int64,2}:

1 2
3 4
10 20
30 40

¢ This works well as long as N is not too large. The number of required function evaluations
grows exponentially.

)i IN
EG(e)) = [ Gleyw(e)de = Y -+ ) w) - wNGle], ... e})
=l jn=l
where w}] stands for weight index j; in dimension 1, same for €.
¢ Total number of nodes: | = [1J> - - - Jn, and J; can differ from J.

0.4.1 Example for N =3

* Suppose we have e ~N (0,1),i = 1,2, 3 as three uncorrelated random variables.
¢ Let’s take | = 3 points in all dimensions, so that in total we have JN =27 points.

3



¢ We have the nodes and weights from before in rules["hermite"].

In [3]: rules["hermite"] [1]
repeat (rules["hermite"] [1],inner=[1],outer=[9])

Out[3]: 27-element Array{Float64,1}:
-1.22474
-8.88178e-16

1.22474
-1.22474
-8.88178e-16

1.22474
-1.22474
-8.88178e-16

1.22474
-1.22474
-8.88178e-16

1.22474
-1.22474

-1.22474
-8.88178e-16
1.22474
-1.22474
-8.88178e-16
1.22474
-1.22474
-8.88178e-16
1.22474
-1.22474
-8.88178e-16
1.22474

In [4]: nodes = Any[]
push! (nodes,repeat(rules["hermite"] [1],inner=[1],outer=[9])) # diml
push! (nodes,repeat (rules["hermite"] [1],inner=[3],outer=[3]1)) # dim2
push! (nodes,repeat (rules["hermite"] [1],inner=[9],outer=[1]1)) # dim3
weights = kron(rules["hermite"] [2] ,kron(rules["hermite"] [2],rules["hermite"] [2]))
df = hcat(DataFrame(weights=weights) ,DataFrame(nodes, [:diml, :dim2,:dim3]))

Out[4] : 27E4 DataFrames.DataFrame

Row weights diml dim2 dim3

1 0.0257793 -1.22474 -1.22474 -1.22474
2 0.103117 -8.88178e-16 -1.22474 -1.22474
3 0.0257793 1.22474 -1.22474 -1.22474
4 0.103117 -1.22474 -8.88178e-16 -1.22474
5 0.412469 -8.88178e-16 -8.88178e-16 -1.22474
6 0.103117  1.22474 -8.88178e-16 -1.22474



7 0.0257793 -1.22474 1.22474 -1.22474

8 0.103117 -8.88178e-16 1.22474 -1.22474

9 0.0257793 1.22474 1.22474 -1.22474

10 0.103117 -1.22474 -1.22474 -8.88178e-16
11 0.412469 -8.88178e-16 -1.22474 -8.88178e-16
16  0.103117 -1.22474 1.22474 -8.88178e-16
17 0.412469 -8.88178e-16 1.22474 -8.88178e-16
18 0.103117 1.22474 1.22474 -8.88178e-16
19  0.0257793 -1.22474 -1.22474 1.22474

20 0.103117 -8.88178e-16 -1.22474 1.22474

21 0.0257793 1.22474 -1.22474 1.22474

22 0.103117 -1.22474 -8.88178e-16 1.22474

23 0.412469 -8.88178e-16 -8.88178e-16 1.22474

24 0.103117 1.22474 -8.88178e-16 1.22474

256 0.0257793 -1.22474 1.22474 1.22474

26 0.103117 -8.88178e-16 1.22474 1.22474

27 0.0257793 1.22474 1.22474 1.22474

¢ Imagine you had a function g defined on those 3 dims: in order to approximate the integral,
you would have to evaluate g at all combinations of dimx, multiply with the corresponding
weight, and sum.

0.4.2 Alternatives to the Product Rule

¢ Monomial Rules: They grow only linearly.
¢ Please refer to [juddbook] [1] for more details.

0.5 Monte Carlo Integration

* A widely used method is to just draw N points randomly from the space of the shock €, and
to assign equal weights w; = % to all of them.
¢ The expectation is then

¢ This in general a very inefficient method.

¢ Particularly in more than 1 dimensions, the number of points needed for good accuracy is
very large.

* Monte Carlo has a rate of convergence of O (n~%°)

0.6 Quasi Monte Carlo Integration

¢ Uses non-product techniques to construct a grid of uniformly spaced points.

¢ The researcher controlls the number of points.

¢ We need to construct equidistributed points.

¢ Typically one uses a low-discrepancy sequence of points, e.g. the Weyl sequence:



* x, = nv where v is an irrational number and {} stands for the fractional part of a number.

forv = /2,
xp = {1V2} = {1.4142} = 0.4142, x, = {2V/2} = {2.8242} = 0.8242, ...

Other low-discrepancy sequences are Niederreiter, Haber, Baker or Sobol.
Quasi Monte Carlo has a rate of convergence of close to O(n 1)
The wikipedia entry is good.

In [5]: # Pkg.add("Sobol")
using Sobol
using Plots
s = SobolSeq(2)
p = hcat([next(s) for i = 1:1024]...)"
scatter(pl:,1], pl[:,2], m=(:red,:dot,1.0),legend=false)

ArgumentError: Module Sobol not found in current path.
Run “Pkg.add("Sobol")™ to install the Sobol package.

Stacktrace:
[1] _require(::Symbol) at ./loading.jl:428
[2] require(::Symbol) at ./loading.jl:398

[3] include_string(::String, ::String) at ./loading.jl:515

## Correlated Shocks

¢ We often face situations where the shocks are in fact correlated.

— One very typical case is an AR1 process:

Zir] = Pzt + €4, € ~ N(O,(rz)

The general case is again:

)i N

EG(e)] = [, Glew(e)den Y -+ ), wh - whGlel,..e))
]

ih1=1 iN=1

Now € ~ N(u,X) where X is an N by N variance-covariance matrix.
The multivariate density is

wle) = (27) Ner(z) 2exp (e~ ) Te )

We need to perform a change of variables before we can integrate this.
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¢ Given X is symmetric and positive semi-definite, it has a Cholesky decomposition,
~=00"

where () is a lower-triangular with strictly positive entries.
¢ The linear change of variables is then

v=0"(e—p)

¢ Plugging this in gives
/

Y wG(Qj+p) = Zw]
i=1

where v ~ N(0, Iy).
* So, we can follow the exact same steps as with the uncorrelated shocks, but need to adapt
the nodes.

0.7 References

¢ The Integration part of these slides are based on [@maliar-maliar] [2] chapter 5
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