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1.1 Outline

1. Overview of Approximation Methods

1. Interpolation
2. Regression

2. Polynomial Interpolation
3. Spline Interpolation
4. Multidimensional Approximation

1.2 Approximation Methods

• Confronted with a non-analytic function f (i.e. something not like log(x)), we need a way to
numerically represent f in a computer.

– If your problem is to compute a value function in a dynamic problem, you don’t have
an analytic representation of V.

– If you need to compute an equilibrium distribution for your model, you probably can’t
tell it’s from one parametric family or another. Hence you need to approximate it.

• Approximations use data of some kind which informs us about f . Most commonly, we know
the function values f (xi) at a corresponding finite set of points X = {xi}N

i=1.
• The task of approximation is to take that data and tell us what the function value is at

f (y), y ̸∈ X.
• To an economist this should sound very familiar: take a dataset, learn it’s structure, and

make predictions.
• The only difference is that we can do much better here, because we have more degree’s of

freedom (we can choose our X in Y = βX + ϵ)
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1.3 Some Taxonomy

• Local Approximations: approximate function and it’s derivative f , f ′ at a single point x0.
Taylor Series:

f (x) = f (x0) + (x − x0) f ′(x0) +
(x − x0)2

2
f ′′(x0) + · · ·+ (x − x0)n

n!
f n(x0)

• Interpolation or Colocation: find a function f̂ that is a good fit to f , and require that f̂ passes
through the points. If we think of there being a residual ϵi = f (xi)− f̂ (xi) at each grid point
i, this methods succeeds in setting ϵi = 0, ∀i.

• Regression: Minimize some notion of distance (or squared distance) between f̂ and f , with-
out the requirement of pass through.

1.4 Doing Interpolation in Julia

• In practice, you will make heavy use of high-quality interpolation packages in julia.
• List in the end.
• Nevertheless, function approximation is extremely problem-specific, so sometimes a certain

approach does not work for your problem.
• This is why we will go through the mechanics of some common methods.
• I would like you to know where to start drilling if you need to go and hack somebody elses

code.

1.5 Basis Functions

1. What is a basis?
2. What is a basis function?

1.5.1 Basis in Linear Algebra

• We call a basis B of a vector space V over a field F (such as the real numbers R) a linearly
independent subset of V that spans V.

• In other words B ⊂ V is called a basis if it satisfies

1. linear independence: for all subsets b1, b2, . . . , bn, and for all scalars a1, a2, . . . , an ∈ F,
we have that if b1a1 + b2a2 + · · ·+ bnan = 0, then a1 = a2 = · · · = an = 0

2. spanning of V: for all vectors v ∈ V, one can choose b1, b2, . . . , bn ∈ B and
v1, v2, . . . , vn ∈ V s.t. v = b1v1 + b2v2 + · · ·+ bnvn

• From those definitions you can see that the b are like weights, and that one can represent
vectors are linear combinations of other vectors.

1.5.2 Basis Example in R2

• The set R2 of ordered pairs of real numbers is a vector space V for

1. component-wise addition: (a, b) + (c, d) = (a + c, b + d)
2. scalar multiplication: λ(a, b) = (λa, λb), λ ∈ R.

• One basis called the standard basis of V consists of two vectors:
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1. e1 = (1, 0)
2. e2 = (0, 1)

• Any vector v = (a, b) ∈ R2 can be uniquely written as v = ae1 + be2
• Any other pair of linearly independent vectors like (1, 1) and (−1, 2) is also a basis of R2.

1.5.3 Higher Dimensions

• If the field F has more than 2 dimensions, n say, we work with n-tuples.
• For example, ei = (0, . . . , 0, 1, 0 . . . , 0) with the ith component 1.
• The set of all monomials forms a particular basis: the monomial basis: 1, X, X2, X3, . . .
• Any set of polynomials with a unique polynomial for each degree is also a basis, called a

polynomial sequence. A prominent example here are the Chebyshev polynomials, which we will
encounter again.

1.6 What is a Basis function?

• Now we know that every vector v in a vector space V can be represented by a linear combi-
nation of basis vectors.

• Similarly, we can represent every continuous function in a particular function space F by a
linear combination of basis functions.

• Another good name for basis functions is blending functions. We often use a mixture of several
basis functions to find an approximation.

1.7 Approximating Functions

• Let F by the space of continuous real-valued functions with domain x ∈ R. F is a vector
space.

• Next, we define an inner-product operation on that space:

< g, h >=
∫

x
g(x)h(x)w(x)dx

where functions g, h, w ∈ F and w is a weighting function.
• the pair {F,< ., . >} form an inner-product vector space.
• Now we want to approximate a known function f : x 7→ R in {F,< ., . >}

• Let’s define f̂ (·; c) to be our parametric approximation function. We generically define this
as

f̂ (x; c) =
J−1

∑
j=0

cjϕj(x)

where * ϕj : Rd 7→ R is called a basis function, and ΦJ = {ϕj}J−1
j=0 . * c = c0, c1, . . . , cJ−1 is a

coefficient vector * The integer J is the order of the interpolation. * Our problem is to choose (ϕi, c)
in some way. * We want to minimize the residual function, i.e. γ(x, c) ≡ f (x)− ∑J−1

j=0 cjϕj(x)

• To find coefficients c, one could for example minimize the squared errors, OLS:

c∗ = arg min
∫

x
γ(x, c)w(x)dx

3



• In standard OLS, we’d set the weighting function to w(x) = 1

We will construct a grid of M ≥ J points x1, . . . , xM within the domain Rd, and we will denote
the residuals at each grid point by ϵ = ϵ1, . . . , ϵM: ϵ1

...
ϵM

 =

 f (x1)
...

f (xM)

−

 ϕ1(x1) . . . ϕJ(x1)
...

. . .
...

ϕ1(xM) . . . ϕJ(xM)

 ·

 c1
...

cJ

 ffl = y − Φc

• Interpolation or colocation occurs when J = M, i.e. we have a square matrix of basis functions,
and can exactly solve this.

• We basically need to solve the system

n

∑
j=1

cjϕj(xi) = f (xi), ∀i = 1, 2, . . . , n

Φc = y

where the second line uses vector notation, and y has all values of f . * Solution: c = Φ−1y.

1.8 Regression Basics

• If we have more evaluation points than basis functions, M > J say, interpolation nodes than
basis functions, we cannot do that. Instead we can define a loss function, and minimize it.

• In the case of squared loss, of course, this leads to the least squares solution:

ei = f (xi)−
n

∑
j=1

cjϕj(xi)

min
c

e2
i =⇒

c = (Φ′Φ)−1Φ′y

1.9 Spectral and Finite Element Methods

• Spectral Methods are such that the basis functions are non-zero over the entire domain of f .

– Polynomial interpolation
– Chebychev interpolation

• Finite Element methods are such that basis functions are non-zero only on a subset of the
domain.

– Splines

* Linear splines, i.e. splines of degree 1, a.k.a. linear approximation
* Higher order splines, mainly the cubic spline.
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1.10 What makes a good Approximation?

• Should be arbitrarily accurate as we increase n.
• Φ Should be efficiently (fast) computable. If Φ were differentiable, we could easily get

e.g. f̂ ′(x) = ∑J
j=1 cjϕ

′
j(xi)

• c Should be efficiently (fast) computable.

1.11 What Polynomial to use? What form for Φ?

• In principle the monomial basis could be used. It is just the power functions of x: 1, x, x2, x3, . . .
• Stacking this up for each evaluation node gives the Vandermonde Matrix:

V =


1 x1 . . . xn−2

1 xn−1
1

1 x2 . . . xn−2
2 xn−1

2
...

...
. . .

...
1 xm . . . xn−2

m xn−1
m


for the case with m evaluation nodes for x, and n basis functions for each xi.

1.11.1 Choosing Basis Matrices

• If we choose Φ so that it’s elements share a lot of information, it will be hard to invert it.
• So, if the elements share very little information, it’s easier to invert, hence good for us
• For example, if we have Φ close to diagonal (i.e. different basis ϕj(x) are non-zero at different

x).
• Such Φ are generated by using orthogonal Polynomials (under our inner product definition).
• An orthogonal Polynomial has 2 sequences of polynomials orthogonal under an inner prod-

uct: their inner product is zero under a certain weighting function w(x).
• For example, the Chebyshev polynomials are orthogonal wrt. to weight 1√

1−x2

• for degrees n, m of that polynomial, Tn, Tm, we have

∫ 1

−1
Tn(x)Tm(x)

dx√
1 − x2

=


0 n ̸= m
π n = m = 0
π
2 n = m ̸= 0

1.11.2 Chebyshev Polynomials of the first kind

• There is a nice recursion to get Tn(x):

T0(x) = 1 (1)
T1(x) = x (2)

Tn+1(x) = 2xTn(x)− Tn−1(x). (3)

• Code that up and compute T3(0.5)!
• Check you get the same as with the alternative closed form Tn(x) = cos(n arccos(x))
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In [1]: function T(x,n)
@assert (x >= -1) & (x <= 1)
if n == 0

return 1.0
elseif n==1

return x
else

2*x*T(x,n-1) - T(x,n-2)
end

end
T2(x,n) = cos(n* acos(x))
@show T(0.5,3)
using Test
@assert T2(0.5,3) == T(0.5,3)

T(0.5, 3) = -1.0

In [2]: # weighting function
w(x) = 1.0 / sqrt(1-x^2)
using Statistics
using Test

# simple integration works for n not equal m
@assert isapprox(mean(T(x,0) * T(x,1) * w(x) for x in range(-0.99,stop = 0.99, length=100)), 0.0, atol = 1e-16)
@assert isapprox(mean(T(x,4) * T(x,5) * w(x) for x in range(-0.99,stop = 0.99, length=100)), 0.0, atol = 1e-16)

1.12 Chebyshev Nodes

• Chebyshev Nodes are the roots of the chebyshev polynomial (i.e. where P(x) = 0).
• They are defined in the interval [−1, 1] as

xi = cos
(

2k − 1
2n

π

)
, k = 1, . . . , n

• Which maps to general interval [a, b] as

xi =
1
2
(a + b) +

1
2
(b − a) cos

(
2k − 1

2n
π

)
, k = 1, . . . , n

• Chebyshev nodes are not evenly spaced: there are more points towards the boundaries. You
might remember that from Gaussian Integration nodes.

In [3]: using Plots
using FastGaussQuadrature
gcnodes = gausschebyshev(21) # generate 11 Chebyshev Nodes
gr()
scatter(gcnodes,ones(21),ylims=(0.9,1.1),m=(:red,:+),legend=false,size=(600,100),yticks=nothing)

Out[3]:
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1.12.1 Constructing Φ as T evaluated at the Chebyshev Nodes

• Combining Chebyshev nodes evaluated at the roots T of the Cheby polynomial to construct
Φ is a particularly good idea.

• Doing so, we obtain an interpolation matrix Φ with typical element

ϕij = cos
(
(n − i + 0.5)(j − 1)π

n

)
• And we obtain that Φ is indeed orthogonal

ΦTΦ = diag{n, n/2, n/2, . . . , n/2}

In [4]: using BasisMatrices
x = range(-4, stop = 4 ,length = 10)
= Basis(ChebParams(length(x),-4,4))

Info: Recompiling stale cache file /Users/florian.oswald/.julia/compiled/v1.1/BasisMatrices/65PSC.ji for BasisMatrices [08854c51-b66b-5062-a90d-8e7ae4547a49]
@ Base loading.jl:1184

Out[4]: 1 dimensional Basis on the hypercube formed by (-4.0,) Œ (4.0,).
Basis families are Cheb

In [5]: S, y = nodes()

Out[5]: ([-3.95075, -3.56403, -2.82843, -1.81596, -0.625738, 0.625738, 1.81596, 2.82843, 3.56403, 3.95075], ([-3.95075, -3.56403, -2.82843, -1.81596, -0.625738, 0.625738, 1.81596, 2.82843, 3.56403, 3.95075],))

In [6]: = BasisMatrix(, Expanded(), S, 0)

Out[6]: BasisMatrix{Expanded} of order [0]

In [7]: .vals[1]' * .vals[1]

Out[7]: 10Œ10 Array{Float64,2}:
10.0 -1.11022e-16 -2.22045e-16 -2.10942e-15 -5.32907e-15
-1.11022e-16 5.0 -1.41698e-15 -4.571e-15 -2.46571e-15
-2.22045e-16 -1.41698e-15 5.0 -2.33515e-15 -5.35038e-15
-1.88738e-15 -5.05353e-16 -1.91117e-15 -4.6033e-15 -2.2613e-15
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-1.22125e-15 -2.38199e-15 -1.46093e-15 -2.66302e-15 -4.90537e-15
-2.77556e-15 -1.43304e-15 -2.71577e-15 -4.67867e-15 -2.25549e-15
-1.66533e-15 -3.38498e-15 -2.09657e-15 -2.23671e-15 -4.98201e-15
-3.88578e-15 -1.76844e-15 -3.9379e-15 -4.87009e-15 -2.42363e-15
-2.10942e-15 -4.571e-15 -2.33515e-15 5.0 -4.90931e-15
-5.32907e-15 -2.46571e-15 -5.35038e-15 -4.90931e-15 5.0

1.13 (Chebyshev) Interpolation Proceedure

• Let’s summarize this proceedure.
• Instead of Chebyshev polynomials we could be using any other suitable family of polyno-

mials.
• To obtain a Polynomial interpolant f̂ , we need:

1. a function to f interpolate. We need to be able to get the function values somehow.
2. A set of (Chebyshev) interpolation nodes at which to compute f
3. An interpolation matrix Φ that corresponds to the nodes we have chosen.
4. A resulting coefficient vector c

• To obtain the value of the interpolation at x′ off our grid, we also need a way to evaluate
Φ(x′).

1. Evaluate the Basis function Φ at x′: get Φ(x′)
2. obtain new values as y = Φ(x′)c.

1.14 Polynomial Interpolation with Julia: ApproxFun.jl

• ApproxFun.jl is a Julia package based on the Matlab package chebfun. It is quite amazing.
• More than just function approximation. This is a toolbox to actually work with functions.
• given 2 functions f , g, we can do algebra with them, i.e. h(x) = f (x) + g(x)2

• We can differentiate and integrate
• Solve ODE’s and PDE’s
• represent periodic functions
• Head over to the website and look at the readme.

In [8]: using LinearAlgebra, SpecialFunctions, Plots, ApproxFun
x = Fun(identity,0..10)
f = sin(x^2)
g = cos(x)

h = f + g^2
r = roots(h)
rp = roots(h')

using Plots
plot(h,labels = "h")
scatter!(r,h.(r),labels="roots h")
scatter!(rp,h.(rp),labels = "roots h'")

Out[8]:
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In [9]: # works even with discontinuities!
ff = x->sign(x-0.1)/2 + cos(4*x); # sign introduces a jump at 0.1
x = Fun(identity) # set up a function space
space(x)
f = ff(x) # define ff on that space
plot(f) # plot

Out[9]:
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In [10]: # whats the first deriv of that function at at 0.785?
println(f'(0.785))
# and close to the jump, at 0.100001?
println(f'(0.1000001))
# integral of f?
g1 = cumsum(f)
g = g1 + f(-1)
integral = norm(f-g)
integral

-0.006370611665950006
-1.5576748429320297

Out[10]: 2.357186284506263

• The main purpose of this package is to manipulate analytic functions, i.e. function with an
algebraic representation.

• There is the possibility to supply a set of data points and fit a polynomial:

In [11]: S = Chebyshev(1..2);
n = 100; m = 50;
p = range(1,stop=2,length=n); # a non-default grid
v = exp.(p); # values at the non-default grid
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V = Array{Float64}(undef,n,m); # Create a Vandermonde matrix by evaluating the basis at the grid
for k = 1:m

V[:,k] = Fun(S,[zeros(k-1);1]).(p)
end
f = Fun(S,V\v);
@show f(1.1)
@show exp(1.1)

f(1.1) = 3.004166023946432
exp(1.1) = 3.0041660239464334

Out[11]: 3.0041660239464334

1.15 Splines: Piecewise Polynomial Approximation

• Splines are a finite element method, i.e. there are regions of the function domain where some
basis functions are zero.

• As such, they provide a very flexible framework for approximation instead of high-order
polynomials.

– Keep in mind that Polynomials basis functions are non-zero on the entire domain. Re-
member the Vandermonde matrix.

• They bring some element of local approximation back into our framework. What happens
at one end of the domain to the function is not important to what happens at the other end.

• Looking back at the previous plot of random data: we are searching for one polynomial to
fit all those wiggles. A spline will allow us to design different polynomials in different parts
of the domain.

1.15.1 Splines: Basic Setup

• The fundamental building block is the knot vector, or the breakpoints vector z of length p. An
element of z is zi.

• z is ordered in ascending order.
• z spans the domain [a, b] of our function, and we have that a = z1, b = zp
• A spline is of order k if the polynomial segments are k-th order polynomials.
• Literature: [@deboor] [?] is the definitive reference for splines.

1.15.2 Splines: Characterization

• Given p knots, there are p − 1 polynomial segments of order k, each characterized by k + 1
coefficients, i.e. a total of (p − 1)(k + 1) parameters.

• However, we also require the spline to be continuous and differentiable of degree k − 1 at
the p − 2 interior breakpoints.

• Imposing that uses up an additional k(p − 2) conditions.
• We are left with n = (p − 1)(k + 1)− k(p − 2) = p + k − 1 free parameters.
• A Spline of order k and p knots can thus be written as a linear combination of it’s n =

p + k − 1 basis functions.
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1.16 B-Splines: Definition

• We mostly use Basis Splines, or B-Splines.

• Here is a recursive definition of a B-Spline (and what is used in ApproXD):

• Denote the j-th basis function of degree k with knot vector z at x as Bk,z
j (x)

• Again, there are n = k + p − 1 B’s (where p= length(z))

• We can define Bk,z
j (x) recursively like this:

Bk,z
j (x) =

x − zj−k

zj − zj−k
Bk−1,z

j−1 (x) +
zj+1 − x

zj+1 − zj+1−k
Bk−1,z

j (x), j = 1, . . . , n

• The recursion starts with

B0,z
j (x) =

{
1 if zj ≤ x < zj+1

0 otherwise.

• For this formulation to work, we need to extend the knot vector for j < 1, j > p:

zj =

{
a if j ≤ 1
b if j ≥ p

• And we need to set the endpoints

Bk−1,z
0 = Bk−1,z

n = 0

• You may see that this gives rise to a triangular computation strategy, as pointed out here.

1.17 B-Splines: Derivatives and Integrals

• This is another very nice thing about B-Splines.

• The derivative wrt to it’s argument x is

dBk,z
j (x)

dx
=

k
zj − zj−k

Bk−1,z
j−1 (x) +

k
zj+1 − zj+1−k

Bk−1,z
j (x), j = 1, . . . , n

• Similarly, the Integral is just the sum over the basis functions:∫ x

a
Bk,z

j (y)dy =
n

∑
i=j

zi − zi−k

k
Bk+1,z

i+1 (x)
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In [12]: using ApproXD
# ] dev https://github.com/floswald/ApproXD.jl
bs = BSpline(7,3,0,1) #7 knots, degree 3 in [0,1]
# how many basis functions? (go back 1 slide.)
# getNumCoefs(bs)
x = range(0,stop =1.0, length = 500)
B = Array(getBasis(collect(x),bs))
plot(x,B,layout=(3,3),grid=false,ylim=(-0.1,1.1),legend=false,linewidth=2,linecolor=:black)

Out[12]:
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In [13]: # Notice that placing each of those panels on top of each other generates a sparse matrix!
plot(x,B,grid=false,ylim=(-0.1,1.1),legend=false)

Out[13]:
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1.18 Linear B-Spline: A useful special case

• This is connecting the dots with a straight line
• This may incur some approximation error if the underlying function is very curved between

the dots.
• However, it has some benefits:

– it is shape-preserving,
– it is fast,
– it is easy to build.

• For a linear spline with evenly spaced breakpoints, this becomes almost trivial.

– Let’s define h = b−a
n−1 as the distance between breakpoints.

– Our basis function becomes very simple, giving us a measure of how far x is from the
next knot:

ϕj(x) =

{
1 − |x−zj|

h if |x − zj| ≤ h
0 otherwise

• Notice that each interior basis function (i.e. not 0 and not n) has witdth 2h.

In [14]: bs = BSpline(9,1,0,1) #9 knots, degree 1 in [0,1]
x = range(0,stop = 1.0,length = 500)

14



B = Array(getBasis(collect(x),bs))
plot(x,B,layout=(3,3),grid=false,ylim=(-0.1,1.1),legend=false,linewidth=2,linecolor=:black)

Out[14]:
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1.19 Linear B-Spline: Evaluation

• In order to evaluate the linear interpolator, we need to know only one thing: Which knot
span is active, i.e. what is j s.t. x ∈ [zj, zj+1]?

• This is a classic problem in computer science. Binary search.
• julia implements searchsortedlast.
• Once we know j, it’s easy to get the interpolated value as

f̂ (x) =
x − zj

h
f (zj+1) +

zj+1 − x
h

f (zj)

1.20 The Importance of Knot Placement

• We just talked about equally spaced knots. This is just a special case.
• B-Splines give us the flexibility to place the knots where we want.
• Contrary to Polynomial interpolations (where we cannot choose the evaluation nodes), this

is very helpful in cases where we know that a function is very curved in a particular region.
• Canonical Example: Runge’s function: f (x) = (1 + 25x2)−1.
• Also: If you know that your function has a kink (i.e. a discontinuous first derivative) at x̂,

then you can stack breakpoints on top of each other at x̂
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• That’s going to be part of your homework!

In [15]: gg(x) = (1+25x^2)^(-1)
plot(gg)

Out[15]:

-4 -2 0 2 4

0.00

0.25

0.50

0.75

1.00

y1

1.21 Interpolation with Interpolations.jl

• Interpolations.jl assumes that data is uniformly spaced on grid 1:N
• Same for multiple dimensions
• However, we can scale 1:N to different domains
• finally, we can also supply our own, non-uniform grids.
• Can get gradients of interpolations right away.

In [34]: # interpolation
# restart kernel!
using Interpolations
A = rand(10,5)
itp = interpolate(A, Interpolations.BSpline(Quadratic(Reflect(OnCell()))))
itp(1.9,4.9)

Out[34]: 0.2609001368014953

In [32]: A
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Out[32]: 10Œ5 Array{Float64,2}:
0.0440558 0.0759254 0.424806 0.0733616 0.0104042
0.131006 0.692091 0.435421 0.363613 0.789312
0.423814 0.765224 0.962783 0.48646 0.768033
0.35892 0.394449 0.938537 0.729178 0.706436
0.54336 0.148386 0.236388 0.580917 0.192891
0.507772 0.517813 0.207813 0.930954 0.707769
0.868053 0.959416 0.726591 0.741459 0.283866
0.293944 0.547819 0.851113 0.550485 0.270864
0.134517 0.998558 0.975837 0.704406 0.862646
0.452014 0.307677 0.469785 0.365602 0.178347

In [33]: A[2,5]

Out[33]: 0.7893123641918425

In [35]: A_x = 1.:2.:40. # x in [1,40]
A = [log(x) for x in A_x] # f(x)
itp = interpolate(A, Interpolations.BSpline(Cubic(Interpolations.Line(OnGrid()))))
sitp = scale(itp, A_x) # scale x-axis of interpolator
@show sitp(3.) # exactly log(3.)
@show sitp(3.5) # approximately log(3.5)
@show itp(3); # is the 3rd index(!) in A, not the *value* 3

sitp(3.0) = 1.0986122886681098
sitp(3.5) = 1.2748716241925298
itp(3) = 1.6094379124341

In [18]: #ăSame for 2D
A_x1 = 1:.1:10
A_x2 = 1:.5:20
fff(x1, x2) = log(x1+x2)
A = [fff(x1,x2) for x1 in A_x1, x2 in A_x2]
itp = interpolate(A, Interpolations.BSpline(Cubic(Interpolations.Line(OnGrid()))))
sitp = scale(itp, A_x1, A_x2)
sitp(5., 10.) # exactly log(5 + 10)
sitp(5.6, 7.1) # approximately log(5.6 + 7.1)

Out[18]: 2.541602006923902

• Very often we need a gridded interpolation. I.e. we supply the function values on an irreg-
ular grid.

• For this occasion, the GriddedInterpolation type is useful.
• For now this only works in 3 modes:

– Gridded(Linear())
– Gridded(Constant()) nearest neighbor
– NoInterp (you must supply index ON grid)
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In [19]: A = rand(20)
A_x = collect(1.0:2.0:40.0)
knots = (A_x,)
itp = interpolate(knots, A, Gridded(Linear()))
itp(2.0)

Out[19]: 0.5342315736445034

In [20]: # 2D
A = rand(8,20)
knots = ([x^2 for x = 1:8], [0.2y for y = 1:20])
itp = interpolate(knots, A, Gridded(Linear()))
itp(4,1.2) # approximately A[2,6]

Out[20]: 0.6334118989442268

In [21]: # we can mix modes across dimensions!
itp = interpolate(knots, A, (Gridded(Linear()),Gridded(Constant())))
itp(4,1.2)

Out[21]: 0.633411898944227

• What about vector valued interpolations?
• Suppose we have a function f : R 7→ R2

• Economics example:

f (x) =
(

savings(x)
consumption(x)

)
• x is cash on hand.
• We often have situations where several functions are defined on a common support x.
• what is f (1.75)?

In [36]: using StaticArrays
x = range(1,stop = 3, length = 200) # cash on hand
a = Float64[log(1+j)*i for j in x, i in 1:2] # cons and save function
b = reinterpret(SVector{2,Float64}, a')[:]
itp = interpolate(b, Interpolations.BSpline(Quadratic(Reflect(OnCell()))))
@show itp(3)
sitp = scale(itp,x)
@show sitp(3);

itp(3) = [0.703147, 1.40629]
sitp(3) = [1.38629, 2.77259]

In [23]: v = sitp(1.75) # get interpolated values for both function
plot(x,a,labels=["save","cons"],yticks=convert(Array{Float64},v),xlabel="current cash")
vline!([1.75],lab="")
hline!([v[1],v[2]],lab="")
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Out[23]:

1.0 1.5 2.0 2.5 3.0

1.0116009

2.0232018

current cash

save
cons

1.22 The CompEcon Toolbox of Miranda and Fackler

• another good alternative:
• CompEcon.jl

1.23 Multidimensional Approximation

• Up to now, most of what we did was in one dimesion.
• Economic problems often have more dimension than that.

– The number of state variables in your value functions are the number of dimensions.

• We can readily extend what we learned into more dimensions.
• However, we will quickly run into feasibility problems: hello curse of dimensionality.

1.24 Tensor Product of univariate Basis Functions: Product Rule

• One possibility is to approximate e.g. the 2D function f (x, y) by

f̂ (x, y) =
n

∑
i=1

m

∑
j=1

ci,jϕ
x
i (x)ϕy

j (y)

– here ϕx
i is the basis function in x space,
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– you can see that the coefficient vector ci,j is indexed in two dimensions now.
– Notice that our initial notation was general enough to encompass this case, as we de-

fined the basis functions as Rd 7→ R. So with the product rule, this mapping is just
given by ϕx

i (x)ϕy
j (y).

• This formulation requires that we take the product of ϕx
i (x), ϕ

y
j (y) at all combinations of their

indices, as is clear from the summations.
• This is equivalent to the tensor product between ϕx

i and ϕ
y
j .

1.25 Computing Coefficients from Tensor Product Spaces

• Extending this into D dimensions, where in each dim i we have ni basis functions, we get

f̂ (x1, x2, . . . , xD) =
n1

∑
i1=1

n2

∑
i2=1

· · ·
nD

∑
iD=1

ci1,i2,...,iD ϕi1(x1)ϕi2(x2) . . . ϕiD(xD)

• In Vector notation

f̂ (x1, x2, . . . , xD) = [ϕD(xD)⊗ ϕD−1(xD−1)⊗ · · · ⊗ ϕ1(x1)] c

where c is is an n = ΠD
i=1ni column vector

• The solution is the interpolation equation as before,

Φc =y
Φ =ΦD ⊗ ΦD−1 ⊗ · · · ⊗ Φ1

1.25.1 The Problem with Tensor Product of univariate Basis Functions

• What’s the problem?
• Well, solving Φc = y is hard.
• If we have as many evaluation points as basis functions in each dimension, i.e. if each single

Φi is a square matrix, Φ is of size (n,n).
• Inverting this is extremely hard even for moderately sized problems.
• Sometimes it’s not even possible to allocate Φ in memory.
• Here it’s important to remember the sparsity structure of a spline basis function.

In [24]: using ApproXD
gr()
bs = ApproXD.BSpline(7,3,0,1) #7 knots, degree 3 in [0,1]
n = 500
eval_points = collect(range(0,stop = 1.0,length = n))
B = Array(ApproXD.getBasis(eval_points,bs))
ys = [string("Basis",i) for i = size(B)[2]-1:-1:0]
xs = reverse(eval_points)
heatmap(xs,ys,reverse(B',dims=1))

Out[24]:
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• This is a cubic spline basis. at most k + 1 = 4 basis are non-zero for any x.

In [25]: heatmap(xs,ys,reverse(B',dims=1) .> 0, cbar = false)

Out[25]:
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1.26 Using Sparsity of Splines

• It may be better to store the splines in sparse format.
• Look at object B by typing B and typeof(B)
• There are sparse system solvers available.
• Creating and storing the inverse of Φ destroys the sparsity structure (inverse of a sparse

matrix is not sparse), and may not be a good idea.
• Look back at Section ??
• We only have to sum over the non-zero entries! Every other operation is pure cost.
• This is implemented in ApproXD.jl for example via

function evalTensor2{T}(mat1::SparseMatrixCSC{T,Int64},
mat2::SparseMatrixCSC{T,Int64},
c::Vector{T})

1.27 High Dimensional Functions: Introducing the Smolyak Grid

• This is a modification of the Tensor product rule.
• It elemininates points from the full tensor product according to their importance for the qual-

ity of approximation.
• The user controls this quality parameter, thereby increasing/decreasing the size of the grid.
• [@jmmv] [1]is a complete technical reference for this method.
• [@maliar-maliar] [2]chapter 4 is very good overview of this topic, and the basis of this part

of the lecture.

22



1.28 The Smolyak Grid in 2 Dimensions

• Approximation level µ ∈ N governs the quality of the approximation.
• Start with a unidimensional grid of points x:

x =

{
−1,

−1√
2

, 0,
1√
2

, 1
}

which are 5 Chebyshev nodes (it’s not important that those are Chebyshev nodes, any grid
will work).

• A 2D tensor product x ⊗ x gives 25 grid points

x ⊗ x =

{
(−1,−1), (−1,

−1√
2
), . . . , (1, 1)

}
• The Smolyak method proceeds differently.
• We construct three nested sets:

i = 1 : S1 = {0}
i = 2 : S2 = {0,−1, 1}
i = 3 : S3 =

{
−1, −1√

2
, 0, 1√

2
, 1
}

• Then, we construct all possible 2D tensor products using elements from these nested sets in
a table (next slide).

• Finally, we select only those elements of the table, that satisfy the Smolyak rule:

i1 + i2 ≤ d + µ

where i1, i2 are column and row index, respectively, and d, µ are the number of dimensions
and the quality of approximation.

2 The Smolyak Grid in 2D: Tensor Table

2.1 Selecting Elements

• Denote the Smolyak grid for d dimensions at level µ by Hd,µ.
• if µ = 0 we have i1 + i2 ≤ 2. Only one point satisfies this, and

H2,0 = {(0, 0)}

• if µ = 1 we have i1 + i2 ≤ 3. Three cases satisfy this:

1. i1 = 1, i2 = 1 → (0, 0)
2. i1 = 1, i2 = 2 → (0, 0), (0,−1), (0, 1)
3. i1 = 2, i2 = 1 → (0, 0), (−1, 0), (1, 0)

– Therefore, the unique elements from the union of all of those is

H2,1 = {(0, 0), (−1, 0), (1, 0), (0,−1), (0, 1)}

• if µ = 2 we have i1 + i2 ≤ 4. Six cases satisfy this:
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[@maliar-maliar] table 3: All Tensor Products

[@maliar-maliar] figure 2: Tensor vs Smolyak in 2D

1. i1 = 1, i2 = 1
2. i1 = 1, i2 = 2
3. i1 = 2, i2 = 1
4. i1 = 1, i2 = 3
5. i1 = 2, i2 = 2
6. i1 = 3, i2 = 1

– Therefore, the unique elements from the union of all of those is

H2,2 =

{
(−1, 1), (0, 1), (1, 1), (−1, 0), (0, 0), (1, 0), (−1,−1), (0,−1), (1,−1),

(
−1√

2
, 0
)

,
(

1√
2

, 0
)

,
(

0,
−1√

2

)
,
(

0,
1√
2

)}
• Note that those elements are on the diagonal from top left to bottom right expanding through

all the tensor products on table 3.

2.2 Size of Smolyak Grids

• The Smolyak grid grows much slower (at order d to a power of µ) than the Tensor grid
(exponential growth)
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[@maliar-maliar] figure 4: Tensor vs Smolyak in 2D, number of grid points

2.3 Smolyak Polynomials

• Corresponding to the construction of grid points, there is the Smolyak way of constructing
polynomials.

• This works exactly as before. We start with a one-dimensional set of basis functions (again
Chebyshev here, again irrelevant):{

1, x, 2x2 − 1, 4x3 − 3x, 8x4 − 8x2 + 1
}

• Three nested sets:

i = 1 : S1 = {1}
i = 2 : S2 = {1, x, 2x2 − 1}
i = 3 : S3 =

{
1, x, 2x2 − 1, 4x3 − 3x, 8x4 − 8x2 + 1

}
• Denoting Pd,µ the Smolyak polynomial, we follow exactly the same steps as for the grids to

select elements of the full tensor product table 5:

2.4 Smolyak Interpolation

This proceeds as in the previouses cases:

1. Evaluate f at all grid points Hd,µ.
2. Evaluate the set of basis functions given by Pd,µ at all grid points Hd,µ.
3. Solve for the interpolating coefficients by inverting the Basis function matrix.

2.5 Extensions

• There is a lot of redundancy in computing the grids the way we did it.
• More sophisticated approaches take care not to compute repeated elements.
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[@maliar-maliar] figure 5: All Smolyak Polynomials in 2D

2.6 Smolyak Grids in Julia

• There are at least 2 julia packages that implement this idea:

– https://github.com/QuantEcon/BasisMatrices.jl
– https://github.com/RJDennis/SmolyakApprox.jl

3 Using (Smolyak from) BasisMatrices

• BasisMatrices provides general support for all kinds of basis matrices.
• Cheb for chebyshev basis matrix
• Spline for spline
• Lin for linear

3.0.1 Outline

• We usually start with defining Params for each type: bounds, grid points, degrees, etc
• Then we construct a Basis type basis
• Then we can get evaluation nodes, i.e. points at which to evaluate our function with

nodes(basis)
• Then get an evaluted basis matrix with BasisMatrix(basis)

In [26]: using BasisMatrices
grid1 = range(1,stop = 3,length = 10)
lp = LinParams(grid1)
sp = SplineParams(collect(grid1),0,3) # nodes, whether only 2 nodes, degree of spline
sm = SmolyakParams(2,1,[3],[2]) #ădims,mu,lower bound(s), upper bound(s)
sm2 = SmolyakParams(2,[1,2],[0,-0.5],[3,4.4]) #ădims,mu,lower bound(s), upper bound(s)
sm3 = SmolyakParams(3,[1,2,2],[0,-0.5,1],[3,4.4,5]) #ădims,mu,lower bound(s), upper bound(s)

Out[26]: Smolyak interpolation parameters in 3 dimensions from [0.0, -0.5, 1.0] Œ [3.0, 4.4, 5.0]

In [27]: #ăsimple interpolation
fi(x) = x.^2 - 0.5*x.^3
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sp = SplineParams(collect(grid1),0,3) # nodes, whether only 2 nodes, degree of spline
sb = Basis(sp)
s,n = BasisMatrices.nodes(sb)
sv =fi(s)
coef, bs_direct = funfitxy(sb, s, sv) #ăcompute coefficients
plot(fi,1,3,label="truth")
newx = 1 .+ rand(10)*2
newy = funeval(coef,sb,newx) # evaluate basis at new points
scatter!(newx,newy,label="approx")

Out[27]:

1.0 1.5 2.0 2.5 3.0

-4

-3

-2

-1

0
truth
approx

In [28]: #ămultiple dimensions
basis = Basis(SplineParams(25, -1, 1, 2),SplineParams(20, -1, 2, 1)) # quadratic and linear spline
# get nodes
X, x12 = BasisMatrices.nodes(basis)

# function to interpolate
f2(x1, x2) = cos.(x2) ./ exp.(x1)
f2(X::Matrix) = f2.(X[:, 1], X[:, 2])

# f at nodes
y = f2(X)
Ymat = [f2(i,j) for i in x12[1], j in x12[2]]
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coefs, bbs = funfitxy(basis, X, y)
ynew = funeval(coefs, basis, X[5:5, :])[1]
using Test
@test maximum(abs, ynew - y[5]) <= 1e-12

# plotlyjs()
surface(x12[1],x12[2],Ymat',alpha=0.7,cbar=false)

xnew=hcat(-1 .+ rand(10)*2 , -1 .+ rand(10)*3)
ynew = [funeval(coefs, basis, xnew[i,:]) for i in 1:size(xnew,1)]
scatter!(xnew[:,1],xnew[:,2],ynew,markersize=2,markershape=:rect)

Out[28]:

y2

In [29]: # same with the smolyak grid
#ămultiple dimensions
using LinearAlgebra
sp = SmolyakParams(2,3, [-1,-1],[1,2])
basis = Basis(sp)
# get nodes
X, x12 = BasisMatrices.nodes(basis)

# # f at nodes
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y = f2(X)
Ymat = [f2(i,j) for i in unique(X[:,1]), j in unique(X[:,2])]

# map domain into unit hypercube
cube = BasisMatrices.dom2cube(X, basis.params[1])
#ăevaluate basis matrix
eb = BasisMatrices.build_B(sp.d, sp.mu, cube, sp.pinds)
coef = pinv(eb) * y

xnew = hcat(-1 .+ rand(30)*2 , -1 .+ rand(30)*3)
cube = BasisMatrices.dom2cube(xnew, sp)
eb = BasisMatrices.build_B(sp.d, sp.mu, cube, sp.pinds)
ynew = eb * coef

scatter(X[:,1],X[:,2],y,markersize=2)
scatter!(xnew[:,1],xnew[:,2],ynew,markersize=2,markershape=:rect)

Out[29]:

y1
y2

3.1 More on Sparse Grids

• Sparse Grids are widely used.
• The Tasmanian library is excellent.
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• The Tasmanian.jl is a simple wrapper to that library.
• Simon Scheidegger has many useful resources on his website, in particular their joint pa-

per with Johannes Brumm features an application of sparse grids for high dimensional eco-
nomics problems.

In [30]: using Tasmanian
Tasmanian.ex2()

Info: error on initial grid: 0.06798, with 13 points
@ Tasmanian /Users/florian.oswald/.julia/dev/Tasmanian/examples/examples.jl:88
Info: refinement level 1 error: 0.02096, with 16 points
@ Tasmanian /Users/florian.oswald/.julia/dev/Tasmanian/examples/examples.jl:102
Info: refinement level 2 error: 0.00896, with 36 points
@ Tasmanian /Users/florian.oswald/.julia/dev/Tasmanian/examples/examples.jl:102
Info: refinement level 3 error: 0.00314, with 80 points
@ Tasmanian /Users/florian.oswald/.julia/dev/Tasmanian/examples/examples.jl:102
Info: refinement level 4 error: 0.00097, with 176 points
@ Tasmanian /Users/florian.oswald/.julia/dev/Tasmanian/examples/examples.jl:102
Info: refinement level 5 error: 0.00031, with 384 points
@ Tasmanian /Users/florian.oswald/.julia/dev/Tasmanian/examples/examples.jl:102
Info: refinement level 6 error: 9.0e-5, with 824 points
@ Tasmanian /Users/florian.oswald/.julia/dev/Tasmanian/examples/examples.jl:102
Info: refinement level 7 error: 2.0e-5, with 1688 points
@ Tasmanian /Users/florian.oswald/.julia/dev/Tasmanian/examples/examples.jl:102

Out[30]: 0

In [ ]:
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