
SciencesPo Computational Economics
Spring 2019

Florian Oswald

April 15, 2019

1 Numerical Dynamic Programming

Florian Oswald, Sciences Po, 2019

1.1 Intro

• Numerical Dynamic Programming (DP) is widely used to solve dynamic models.
• You are familiar with the technique from your core macro course.
• We will illustrate some ways to solve dynamic programs.

1. Models with one discrete or continuous choice variable
2. Models with several choice variables
3. Models with a discrete-continuous choice combination

• We will go through:

1. Value Function Iteration (VFI)
2. Policy function iteration (PFI)
3. Projection Methods
4. Endogenous Grid Method (EGM)
5. Discrete Choice Endogenous Grid Method (DCEGM)

1.2 Dynamic Programming Theory

• Payoffs over time are

U =
∞

∑
t=1

βtu (st, ct)

where β < 1 is a discount factor, st is the state, ct is the control.

• The state (vector) evolves as st+1 = h(st, ct).

• All past decisions are contained in st.

1

1.2.1 Assumptions

• Let ct ∈ C(st), st ∈ S and assume u is bounded in (c, s) ∈ C × S.
• Stationarity: neither payoff u nor transition h depend on time.
• Write the problem as

v(s) = max
s′∈Γ(s)

u(s, s′) + βv(s′)

• Γ(s) is the constraint set (or feasible set) for s′ when the current state is s

1.2.2 Existence

Theorem. Assume that u(s, s′) is real-valued, continuous, and bounded, that β ∈ (0, 1), and that
the constraint set Γ(s) is nonempty, compact, and continuous. Then there exists a unique function
v(s) that solves the above functional equation.

Proof. [@stokeylucas] [4] theoreom 4.6.

2 Solution Methods

2.1 Value Function Iteration (VFI)

• Find the fix point of the functional equation by iterating on it until the distance between
consecutive iterations becomes small.

• Motivated by the Bellman Operator, and it’s characterization in the Continuous Mapping
Theorem.

2.2 Discrete DP VFI

• Represents and solves the functional problem in R on a finite set of grid points only.
• Widely used method.

– Simple (+)
– Robust (+)
– Slow (-)
– Imprecise (-)

• Precision depends on number of discretization points used.
• High-dimensional problems are difficult to tackle with this method because of the curse of

dimensionality.

2.2.1 Deterministic growth model with Discrete VFI

• We have this theoretical model:

V(k) = max
0<k′< f (k)

u(f (k)− k′) + βV(k′)

f (k) = kα

k0given

2

• and we employ the followign numerical approximation:

V(ki) = max
i′=1,2,...,n

u(f (ki)− ki′) + βV(i′)

• The iteration is then on successive iterates of V: The LHS gets updated in each iteration!

Vr+1(ki) = max
i′=1,2,...,n

u(f (ki)− ki′) + βVr(i′)

Vr+2(ki) = max
i′=1,2,...,n

u(f (ki)− ki′) + βVr+1(i′)

...

• And it stops at iteration r if d(Vr, Vr−1) < tol
• You choose a measure of distance, d(·, ·), and a level of tolerance.
• Vr is usually an array. So d will be some kind of norm.
• maximal absolute distance
• mean squared distance

Exercise 1: Implement discrete VFI

2.3 Checklist

1. Set parameter values
2. define a grid for state variable k ∈ [0, 2]
3. initialize value function V
4. start iteration, repeatedly computing a new version of V.
5. stop if d(Vr, Vr−1) < tol.
6. plot value and policy function
7. report the maximum error of both wrt to analytic solution

In [1]: alpha = 0.65
beta = 0.95
grid_max = 2 # upper bound of capital grid
n = 150 # number of grid points
N_iter = 3000 # number of iterations
kgrid = 1e-2:(grid_max-1e-2)/(n-1):grid_max # equispaced grid
f(x) = x^alpha # defines the production function f(k)
tol = 1e-9

Out[1]: 1.0e-9

2.4 Analytic Solution

• If we choose u(x) = ln(x), the problem has a closed form solution.
• We can use this to check accuracy of our solution.

In [2]: ab = alpha * beta
c1 = (log(1 - ab) + log(ab) * ab / (1 - ab)) / (1 - beta)

3

c2 = alpha / (1 - ab)
optimal analytical values
v_star(k) = c1 .+ c2 .* log.(k)
k_star(k) = ab * k.^alpha
c_star(k) = (1-ab) * k.^alpha
ufun(x) = log.(x)

Out[2]: ufun (generic function with 1 method)

In [3]: kgrid[4]

Out[3]: 0.04026943624161074

In [3]: # Bellman Operator
inputs
`grid`: grid of values of state variable
`v0`: current guess of value function

output
`v1`: next guess of value function
`pol`: corresponding policy function

#takes a grid of state variables and computes the next iterate of the value function.
function bellman_operator(grid,v0)

v1 = zeros(n) # next guess
pol = zeros(Int,n) # policy function
w = zeros(n) # temporary vector

loop over current states
current capital
for (i,k) in enumerate(grid)

loop over all possible kprime choices
for (iprime,kprime) in enumerate(grid)

if f(k) - kprime < 0 #check for negative consumption
w[iprime] = -Inf

else
w[iprime] = ufun(f(k) - kprime) + beta * v0[iprime]

end
end
find maximal choice
v1[i], pol[i] = findmax(w) # stores Value und policy (index of optimal choice)

end
return (v1,pol) # return both value and policy function

end

4

VFI iterator
#
input
`n`: number of grid points
output
`v_next`: tuple with value and policy functions after `n` iterations.
function VFI()

v_init = zeros(n) # initial guess
for iter in 1:N_iter

v_next = bellman_operator(kgrid,v_init) # returns a tuple: (v1,pol)
check convergence
if maximum(abs,v_init.-v_next[1]) < tol

verrors = maximum(abs,v_next[1].-v_star(kgrid))
perrors = maximum(abs,kgrid[v_next[2]].-k_star(kgrid))
println("Found solution after $iter iterations")
println("maximal value function error = $verrors")
println("maximal policy function error = $perrors")
return v_next

elseif iter==N_iter
warn("No solution found after $iter iterations")
return v_next

end
v_init = v_next[1] # update guess

end
end

plot
using Plots
function plotVFI()

v = VFI()
p = Any[]

value and policy functions
push!(p,plot(kgrid,v[1],

lab="V",
ylim=(-50,-30),legend=:bottomright),
plot(kgrid,kgrid[v[2]],
lab="policy",legend=:bottomright))

errors of both
push!(p,plot(kgrid,v[1].-v_star(kgrid),

lab="V error",legend=:bottomright),
plot(kgrid,kgrid[v[2]].-k_star(kgrid),
lab="policy error",legend=:bottomright))

plot(p...,layout=grid(2,2))

end

5

plotVFI()

Info: Recompiling stale cache file /Users/florian.oswald/.julia/compiled/v1.1/Plots/ld3vC.ji for Plots [91a5bcdd-55d7-5caf-9e0b-520d859cae80]
@ Base loading.jl:1184

Found solution after 418 iterations
maximal value function error = 0.09528625737115703
maximal policy function error = 0.011773635481976297

Out[3]:

0.0 0.5 1.0 1.5 2.0
-50

-45

-40

-35

-30

V

0.0 0.5 1.0 1.5 2.0

0.2

0.4

0.6

0.8

policy

0.0 0.5 1.0 1.5 2.0

-0.08

-0.06

-0.04

-0.02

0.00

V error

0.0 0.5 1.0 1.5 2.0

-0.010

-0.005

0.000

0.005

0.010

policy error

2.4.1 Exercise 2: Discretizing only the state space (not control space)

• Same exercise, but now use a continuous solver for choice of k′.
• in other words, employ the following numerical approximation:

V(ki) = max
k′∈[0,k̄]

ln(f (ki)− k′) + βV(k′)

• To do this, you need to be able to evaluate V(k′) where k′ is potentially off the kgrid.
• use Interpolations.jl to linearly interpolate V.

– the relevant object is setup with function interpolate((grid,),v,Gridded(Linear()))

6

• use Optim::optimize() to perform the maximization.

– you have to define an ojbective function for each ki
– do something like optimize(objective, lb,ub)

In [7]: kgrid

Out[7]: 0.01:0.013355704697986578:2.0

In [16]: using Interpolations
using Optim
function bellman_operator2(grid,v0)

v1 = zeros(n) # next guess
pol = zeros(n) # consumption policy function

Interp = interpolate((collect(grid),), v0, Gridded(Linear()))
Interp = extrapolate(Interp,Interpolations.Flat())

loop over current states
of current capital
for (i,k) in enumerate(grid)

objective(c) = - (log.(c) + beta * Interp(f(k) - c))
find max of ojbective between [0,k^alpha]
res = optimize(objective, 1e-6, f(k)) # Optim.jl
pol[i] = f(k) - res.minimizer # k'
v1[i] = -res.minimum

end
return (v1,pol) # return both value and policy function

end

function VFI2()
v_init = zeros(n) # initial guess
for iter in 1:N_iter

v_next = bellman_operator2(kgrid,v_init) # returns a tuple: (v1,pol)
check convergence
if maximum(abs,v_init.-v_next[1]) < tol

verrors = maximum(abs,v_next[1].-v_star(kgrid))
perrors = maximum(abs,v_next[2].-k_star(kgrid))
println("continuous VFI:")
println("Found solution after $iter iterations")
println("maximal value function error = $verrors")
println("maximal policy function error = $perrors")
return v_next

elseif iter==N_iter
warn("No solution found after $iter iterations")
return v_next

end

7

v_init = v_next[1] # update guess
end
return nothing

end

function plotVFI2()
v = VFI2()
p = Any[]

value and policy functions
push!(p,plot(kgrid,v[1],

lab="V",
ylim=(-50,-30),legend=:bottomright),
plot(kgrid,v[2],
lab="policy",legend=:bottomright))

errors of both
push!(p,plot(kgrid,v[1].-v_star(kgrid),

lab="V error",legend=:bottomright),
plot(kgrid,v[2].-k_star(kgrid),
lab="policy error",legend=:bottomright))

plot(p...,layout=grid(2,2))

end

plotVFI2()

continuous VFI:
Found solution after 418 iterations
maximal value function error = 0.04828453368161689
maximal policy function error = 0.004602693711777683

Out[16]:

8

0.0 0.5 1.0 1.5 2.0
-50

-45

-40

-35

-30

V

0.0 0.5 1.0 1.5 2.0

0.2

0.4

0.6

0.8

policy

0.0 0.5 1.0 1.5 2.0

-0.04

-0.03

-0.02

-0.01

0.00

V error

0.0 0.5 1.0 1.5 2.0
-0.004

-0.002

0.000

0.002

0.004

policy error

2.5 Policy Function Iteration

• This is similar to VFI but we now guess successive policy functions
• The idea is to choose a new policy p∗ in each iteration so as to satisfy an optimality condition.

In our example, that would be the Euler Equation.
• We know that the solution to the above problem is a function c∗(k) such that

c∗(k) = arg max
z

u(z) + βV(f (k)− z) ∀k ∈ [0, ∞]

• We don’t directly solve the maximiation problem outlined above, but it’s first order condi-
tion:

u′(c∗(kt)) = βu′(c∗(kt+1)) f ′(kt+1)

= βu′[c∗(f (kt)− c∗(kt))] f ′(f (kt)− c∗(kt))

• In practice, we have to find the zeros of

g(kt) = u′(c∗(kt))− βu′[c∗(f (kt)− c∗(kt))] f ′(f (kt)− c∗(kt))

In [11]: # Your turn!

9

using Roots
function policy_iter(grid,c0,u_prime,f_prime)

c1 = zeros(length(grid)) # next guess
pol_fun = extrapolate(interpolate((collect(grid),), c0, Gridded(Linear())) , Interpolations.Flat())

loop over current states
of current capital
for (i,k) in enumerate(grid)

objective(c) = u_prime(c) - beta * u_prime(pol_fun(f(k)-c)) * f_prime(f(k)-c)
c1[i] = fzero(objective, 1e-10, f(k)-1e-10)

end
return c1

end

uprime(x) = 1.0 ./ x
fprime(x) = alpha * x.^(alpha-1)

function PFI()
c_init = kgrid
for iter in 1:N_iter

c_next = policy_iter(kgrid,c_init,uprime,fprime)
check convergence
if maximum(abs,c_init.-c_next) < tol

perrors = maximum(abs,c_next.-c_star(kgrid))
println("PFI:")
println("Found solution after $iter iterations")
println("max policy function error = $perrors")
return c_next

elseif iter==N_iter
warn("No solution found after $iter iterations")
return c_next

end
c_init = c_next # update guess

end
end
function plotPFI()

v = PFI()
plot(kgrid,[v v.-c_star(kgrid)],

lab=["policy" "error"],
legend=:bottomright,
layout = 2)

end
plotPFI()

PFI:

10

Found solution after 39 iterations
max policy function error = 7.301895796647112e-5

Out[11]:

0.0 0.5 1.0 1.5 2.0

0.1

0.2

0.3

0.4

0.5

0.6

policy

0.0 0.5 1.0 1.5 2.0

- 7×10
- 5

- 6×10
- 5

- 5×10
- 5

- 4×10
- 5

- 3×10
- 5

- 2×10
- 5

- 1×10
- 5

error

3 Projection Methods

• Many applications require us to solve for an unknown function

– ODEs, PDEs
– Pricing functions in asset pricing models
– Consumption/Investment policy functions

• Projection methods find approximations to those functions that set an error function close to
zero.

3.1 Example: Growth, again

• We stick to our working example from above.
• We encountered the Euler Equation g for optimality.
• At the true consumption function c∗, g(k) = 0.
• We define the following function operator:

11

0 = u′(c∗(k))− βu′[c∗(f (k)− c∗(k))] f ′(f (k)− c∗(k))
≡ (N (⌋∗))(k)

• The Equilibrium solves the operator equation

0 = N (c∗)

3.1.1 Projection Method example

1. create an approximation to c∗: find

c̄ ≡
n

∑
i=0

aiki

which nearly solves

N (c∗) = 0

2. Compute Euler equation error function:

g(k; a) = u′(c̄(k))− βu′[c̄(f (k)− c̄(k))] f ′(f (k)− c̄(k))

3. Choose a to make g(k; a) small in some sense

What’s small in some sense?

• Least-squares: minimize sum of squared errors

min
a

∫
g(k; a)2dk

• Galerkin: zero out weighted averages of Euler errors
• Collocation: zero out Euler equation errors at grid k ∈ {k1, . . . , kn}:

Pi(a) ≡ g(ki; a) = 0, i = 1, . . . , n

3.1.2 General Projection Method

1. Express solution in terms of unknown function

N (h) = 0

where h(x) is the equilibrium function at state x
2. Choose a space for appximation
3. Find h̄ which nearly solves

N (h̄) = 0

12

3.1.3 Projection method exercise

• suppose we want to find effective supply of an oligopolistic firm in cournot competition.
• We want to know q = S(p), how much is supplied at each price p.
• This function is characterized as

p +
S(p)
D′(p)

− MC(S(p)) = 0, ∀p > 0

• Take D(p) = p−η and MC(q) = α
√

q + q2.
• Our task is to solve for S(p) in

p − S(p)pη+1

η
− α

√
S(p)− S(p)2 = 0, ∀p > 0

• No closed form solution. But collocation works!

TASK

1. solve for S(p) by collocation
2. Plot residual function
3. Plot resulting mS(p) together with market demand and m = 1, 10, 20 for market size.

In [5]: using CompEcon
using Plots
using NLsolve
function proj(n=25)

alpha = 1.0
eta = 1.5
a = 0.1
b = 3.0
basis = fundefn(:cheb,n,a,b)
p = funnode(basis)[1] # collocation points

c0 = ones(n)*0.3
function resid!(c::Vector,result::Vector,p,basis,alpha,eta)

your turn!
q = funeval(c,basis,p)[1]
q2 = similar(q)
for i in eachindex(q2)

if q[i] < 0
q2[i] = -20.0

else
q2[i] = sqrt(q[i])

end
end
result[:] = p.+ q .*((-1/eta)*p.^(eta+1)) .- alpha*q2 .- q.^2

13

end
f_closure(r::Vector,x::Vector) = resid!(x,r,p,basis,alpha,eta)
res = nlsolve(f_closure,c0)
println(res)

plot residual function
x = collect(range(a, stop = b, length = 501))

y = similar(x)
resid!(res.zero,y,x,basis,alpha,eta);
y = funeval(res.zero,basis,x)[1]
pl = Any[]
push!(pl,plot(x,y,title="residual function"))

plot supply functions at levels 1,10,20

plot demand function
y = funeval(res.zero,basis,x)[1]
p2 = plot(y,x,label="supply 1")
plot!(10*y,x,label="supply 10")
plot!(20*y,x,label="supply 20")
d = x.^(-eta)
plot!(d,x,label="Demand")

push!(pl,p2)

plot(pl...,layout=2)

end
proj()

Results of Nonlinear Solver Algorithm
* Algorithm: Trust-region with dogleg and autoscaling
* Starting Point: [0.3, 0.3]
* Zero: [0.248768, 0.0838916, -0.13965, 0.0447411, 0.00701804, -0.0135233, 0.00715223, -0.00229524, 0.000329096, 0.000224355, -0.000290968, 0.000210507, -0.000107876, 3.32945e-5, 4.04856e-6, -1.48411e-5, 1.28265e-5, -7.34842e-6, 2.74595e-6, -1.36709e-7, -8.28018e-7, 8.69542e-7, -5.79429e-7, 2.87391e-7, -1.02456e-7]
* Inf-norm of residuals: 0.000000
* Iterations: 9
* Convergence: true

* |x - x'| < 0.0e+00: false
* |f(x)| < 1.0e-08: true

* Function Calls (f): 8
* Jacobian Calls (df/dx): 7

Out[5]:

14

0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.1

0.2

0.3

0.4

residual function

y1

0 10 20 30

0.5

1.0

1.5

2.0

2.5

3.0

supply 1
supply 10
supply 20
Demand

4 Endogenous Grid Method (EGM)

• Fast, elegant and precise method to solve consumption/savings problems
• One continuous state variable
• One continuous control variable

V(Mt) = max
0<c<Mt

u(c) + βEVt+1(R(Mt − c) + yt+1)

• Here, Mt is cash in hand, all available resources at the start of period t

– For example, assets plus income.

• At = Mt − ct is end of period assets
• yt+1 is stochastic next period income.
• R is the gross return on savings, i.e. R = 1 + r.
• utility function can be of many forms, we only require twice differentiable and concave.

4.1 EGM after [@carroll2006method]

• [@carroll2006method] [1] introduced this method.
• The idea is as follows:

– Instead of using non-linear root finding for optimal c (see above)
– fix a grid of possible end-of-period asset levels At
– use structure of model to find implied beginning of period cash in hand.
– We use euler equation and envelope condition to connect Mt+1 with ct

15

4.1.1 Recall Traditional Methods: VFI and Euler Equation

• Just to be clear, let us repeat what we did in the beginning of this lecture, using the Mt
notation.

V(Mt) = max
0<c<Mt

u(c) + βEVt+1(R(Mt − c) + yt+1)

Mt+1 = R(Mt − c) + yt+1

4.1.2 VFI

1. Define a grid over Mt.
2. In the final period, compute

VT(MT) = max
0<c<Mt

u(c)

3. In all preceding periods t, do

Vt(Mt) = max
0<ct<Mt

u(ct) + βEVt+1(R(Mt − ct) + yt+1)

4. where optimal consumption is

c∗t (Mt) = arg max
0<ct<Mt

u(ct) + βEVt+1(R(Mt − ct) + yt+1)

4.1.3 Euler Equation

• The first order condition of the Bellman Equation is

∂Vt

∂ct
= 0

u′(ct) = βE
[

∂Vt+1(Mt+1)

∂Mt+1

]
(FOC)

• By the Envelope Theorem, we have that

∂Vt

∂Mt
= βE

[
∂Vt+1(Mt+1)

∂Mt+1

]
by FOC

∂Vt

∂Mt
= u′(ct)

true in every period:
∂Vt+1

∂Mt+1
= u′(ct+1)

• Summing up, we get the Euler Equation:

u′(ct) = βE
[
u′(ct+1)R

]

16

4.1.4 Euler Equation Algorithm

1. Fix grid over Mt
2. In the final period, compute

c∗T(MT) = arg max
0<cT<Mt

u(cT)

3. With optimal c∗t+1(Mt+1) in hand, backward recurse to find ct from

u′(ct) = βE
[
u′(c∗t+1(R(Mt − ct) + yt+1))R

]
4. Notice that if Mt is small, the euler equation does not hold.

• In fact, the euler equation would prescribe to borrow, i.e. set Mt < 0. This is ruled out.
• So, one needs to tweak this algorithm to check for this possibility

5. Homework.

4.2 The EGM Algorithm

Starts in period T with c∗T = MT. For all preceding periods:

1. Fix a grid of end-of-period assets At
2. Compute all possible next period cash-in-hand holdings Mt+1

Mt+1 = R ∗ At + yt+1

• for example, if there are n values in At and m values for yt+1, we have dim(Mt+1) =
(n, m)

3. Given that we know optimal policy in t + 1, use it to get consumption at each Mt+1

c∗t+1(Mt+1)

4. Invert the Euler Equation to get current consumption compliant with an expected level of
cash-on-hand, given At

ct = (u′)−1 (βE
[
u′(c∗t+1(Mt+1))R|At

])
5. Current period endogenous cash on hand just obeys the accounting relation

Mt = ct + At

In [2]: # minimal EGM implementation, go here: https://github.com/floswald/DCEGM.jl/blob/master/src/dc_algo.jl#L4
#ătry out:
] dev https://github.com/floswald/DCEGM.jl
using DCEGM
DCEGM.minimal_EGM(dplot = true);

17

0 25 50 75 100

0

10

20

30

40

50

4.3 Discrete Choice EGM

• This is a method developed by Fedor Iskhakov, Thomas Jorgensen, John Rust and Bertel
Schjerning.

• Reference: [@iskhakovRust2014] [3]
• Suppose we have several discrete choices (like “work/retire”), combined with a continuous

choice in each case (like “how much to consume given work/retire”).
• Let d = 0 mean to retire.
• Write the problem of a worker as

Vt(Mt) = max [vt(Mt|dt = 0), vt(Mt|dt = 1)]
with

vt(Mt|dt = 0) = max
0<ct<Mt

u(ct) + βEWt+1(R(Mt − ct))

vt(Mt|dt = 1) = max
0<ct<Mt

u(ct)− 1 + βEVt+1(R(Mt − ct) + yt+1)

• The problem of a retiree is

Wt(Mt) = max
0<ct<Mt

u(ct) + βEWt+1(R(Mt − ct))

• Our task is to compute the optimal consumption functions c∗t (Mt|dt = 0), c∗t (Mt|dt = 1)

18

[@iskhakovRust2014] figure 1

4.3.1 Problems with Discrete-Continuous Choice

• Even if all conditional value functions v are concave, the envelope over them, V, is in general
not.

• [@clausenenvelope] [2]show that there will be a kink point M̄ such that

vt(M̄|dt = 0) = vt(M̄|dt = 1)

– We call any such point a primary kink (because it refers to a discrete choice in the
current period)

• V is not differentiable at M̄.
• However, it can be shown that both left and right derivatives exist, with

V−(M̄) < V+(M̄)

• Given that the value of the derivative changes discretely at M̄t, the value function in t − 1
will exhibit a discontinuity as well:

– vt−1 depends on Vt.
– Tracing out the optimal choice of ct−1 implies next period cash on hand Mt, and as that

hits M̄t, the derivative jumps.
– The derivative of the value function determines optimal behaviour via the Euler Equa-

tion.
– We call a discontinuity in vt−1 arising from a kink in Vt a secondary kink.

• The kinks propagate backwards.

• [@iskhakovRust2014] [3] provide an analytic example where one can compute the actual
number of kinks in period 1 of T.

• Figure 1 in [@clausenenvelope]:

19

github/floswald

4.3.2 Kinks

• Refer back to the work/retirement model from before.
• 6 period implementation of the DC-EGM method:

• Iskhakov @ cemmap 2015: Value functions in T-1

• Iskhakov @ cemmap 2015: Value functions in T-2

• Iskhakov @ cemmap 2015: Consumption function in T-2

20

http://www.cemmap.ac.uk/event/id/1213
http://www.cemmap.ac.uk/event/id/1213
http://www.cemmap.ac.uk/event/id/1213

• Optimal consumption in 6 period model:

4.3.3 The Problem with Kinks

• Relying on fast methods that rely on first order conditions (like euler equation) will fail.
• There are multiple zeros in the Euler Equation, and a standard Euler Equation approach is

not guaranteed to find the right one.
• picture from Fedor Iskhakov’s master class at cemmap 2015:

4.3.4 DC-EGM Algorithm

1. Do the EGM step for each discrete choice d
2. Compute d-specific consumption and value functions
3. compare d-specific value functions to find optimal switch points
4. Build envelope over d-specific consumption functions with knowledge of which optimal d

applies where.

4.3.5 But EGM relies on the Euler Equation?!

• Yes.
• An important result in [@clausenenvelope] is that the Euler Equation is still the necessary

condition for optimal consumption

– Intuition: marginal utility differs greatly at ϵ + M̄.

21

http://www.cemmap.ac.uk/event/id/1213

– No economic agent would ever locate at M̄.

• This is different from saying that a proceedure that tries to find the zeros of the Euler Equa-
tion would still work.

– this will pick the wrong solution some times.

• EGM finds all solutions.

– There is a proceedure to discard the “wrong ones”. Proof in [@iskhakovRust2014]

4.3.6 Adding Shocks

• This problem is hard to solve with standard methods.
• It is hard, because the only reliable method is VFI, and this is not feasible in large problems.
• Adding shocks to non-smooth problems is a widely used remedy.

– think of “convexifying” in game theoretic models
– (Add a lottery)
– Also used a lot in macro

• Adding shocks does indeed help in the current model.

– We add idiosyncratic taste shocks: Type 1 EV.
– Income uncertainty:
– In general, the more shocks, the more smoothing.

• The problem becomes

Vt(Mt) = max [vt(Mt|dt = 0) + σϵϵt(0), vt(Mt|dt = 1) + σϵϵt(1)]

vt(Mt|dt = 1) = max
0<ct<Mt

log(ct)− 1 + β
∫

EVt+1(R(Mt − ct) + yηt+1) f (dηt+1)

where the value for retirees stays the same.

4.3.7 Adding Shocks

4.3.8 Full DC-EGM

• Needs to discard false solutions.
• Criterion:

– grid in At is increasing
– Assuming concave utility function, the function

A(M|d) = M − c(M|d)
is monotone non-decreasing

– This means that, if you go through Ai, and find that

Mt(Aj) < Mt(Aj−1)

you know you entered a non-concave region

• The Algorithm goes through the upper envelope and prunes the inferior points M from the
endogenous grids.

• Precise details of Algorithm in paper.
• Julia implementation on floswald/ConsProb.jl

22

https://github.com/floswald/ConsProb.jl

[@iskhakovRust2014] figure 2

23

[@iskhakovRust2014] figure 4

24

[@iskhakovRust2014] figure 4

References

[1] Christopher D Carroll. The method of endogenous gridpoints for solving dynamic stochastic
optimization problems. Economics letters, 91(3):312–320, 2006.

[2] A. Clausen and C. Strub. Envelope theorems for non-smooth and non-concave optimization.
https://andrewclausen.net/research.html, 2013.

[3] Fedor Iskhakov, John Rust, Bertel Schjerning, and Thomas Jorgensen. Estimating Discrete-
Continuous Choice Models: Endogenous Grid Method with Taste Shocks. SSRN working paper,
2014.

[4] Nancy Stokey and R Lucas. Recursive Methods in Economic Dynamics (with E. Prescott). Harvard
University Press, 1989.

25

	Numerical Dynamic Programming
	Intro
	Dynamic Programming Theory
	Assumptions
	Existence

	Solution Methods
	Value Function Iteration (VFI)
	Discrete DP VFI
	Deterministic growth model with Discrete VFI

	Checklist
	Analytic Solution
	Exercise 2: Discretizing only the state space (not control space)

	Policy Function Iteration

	Projection Methods
	Example: Growth, again
	Projection Method example
	General Projection Method
	Projection method exercise

	Endogenous Grid Method (EGM)
	EGM after [@carroll2006method]
	Recall Traditional Methods: VFI and Euler Equation
	VFI
	Euler Equation
	Euler Equation Algorithm

	The EGM Algorithm
	Discrete Choice EGM
	Problems with Discrete-Continuous Choice
	Kinks
	The Problem with Kinks
	DC-EGM Algorithm
	But EGM relies on the Euler Equation?!
	Adding Shocks
	Adding Shocks
	Full DC-EGM

