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1.1 Intro

• Numerical Dynamic Programming (DP) is widely used to solve dynamic models.
• You are familiar with the technique from your core macro course.
• We will illustrate some ways to solve dynamic programs.

1. Models with one discrete or continuous choice variable
2. Models with several choice variables
3. Models with a discrete-continuous choice combination

• We will go through:

1. Value Function Iteration (VFI)
2. Policy function iteration (PFI)
3. Projection Methods
4. Endogenous Grid Method (EGM)
5. Discrete Choice Endogenous Grid Method (DCEGM)

1.2 Dynamic Programming Theory

• Payoffs over time are

U =
∞

∑
t=1

βtu (st, ct)

where β < 1 is a discount factor, st is the state, ct is the control.

• The state (vector) evolves as st+1 = h(st, ct).

• All past decisions are contained in st.
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1.2.1 Assumptions

• Let ct ∈ C(st), st ∈ S and assume u is bounded in (c, s) ∈ C × S.
• Stationarity: neither payoff u nor transition h depend on time.
• Write the problem as

v(s) = max
s′∈Γ(s)

u(s, s′) + βv(s′)

• Γ(s) is the constraint set (or feasible set) for s′ when the current state is s

1.2.2 Existence

Theorem. Assume that u(s, s′) is real-valued, continuous, and bounded, that β ∈ (0, 1), and that
the constraint set Γ(s) is nonempty, compact, and continuous. Then there exists a unique function
v(s) that solves the above functional equation.

Proof. [@stokeylucas] [4] theoreom 4.6.

2 Solution Methods

2.1 Value Function Iteration (VFI)

• Find the fix point of the functional equation by iterating on it until the distance between
consecutive iterations becomes small.

• Motivated by the Bellman Operator, and it’s characterization in the Continuous Mapping
Theorem.

2.2 Discrete DP VFI

• Represents and solves the functional problem in R on a finite set of grid points only.
• Widely used method.

– Simple (+)
– Robust (+)
– Slow (-)
– Imprecise (-)

• Precision depends on number of discretization points used.
• High-dimensional problems are difficult to tackle with this method because of the curse of

dimensionality.

2.2.1 Deterministic growth model with Discrete VFI

• We have this theoretical model:

V(k) = max
0<k′< f (k)

u( f (k)− k′) + βV(k′)

f (k) = kα

k0given
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• and we employ the followign numerical approximation:

V(ki) = max
i′=1,2,...,n

u( f (ki)− ki′) + βV(i′)

• The iteration is then on successive iterates of V: The LHS gets updated in each iteration!

Vr+1(ki) = max
i′=1,2,...,n

u( f (ki)− ki′) + βVr(i′)

Vr+2(ki) = max
i′=1,2,...,n

u( f (ki)− ki′) + βVr+1(i′)

...

• And it stops at iteration r if d(Vr, Vr−1) < tol
• You choose a measure of distance, d(·, ·), and a level of tolerance.
• Vr is usually an array. So d will be some kind of norm.
• maximal absolute distance
• mean squared distance

### Exercise 1: Implement discrete VFI

2.3 Checklist

1. Set parameter values
2. define a grid for state variable k ∈ [0, 2]
3. initialize value function V
4. start iteration, repeatedly computing a new version of V.
5. stop if d(Vr, Vr−1) < tol.
6. plot value and policy function
7. report the maximum error of both wrt to analytic solution

In [1]: alpha = 0.65
beta = 0.95
grid_max = 2 # upper bound of capital grid
n = 150 # number of grid points
N_iter = 3000 # number of iterations
kgrid = 1e-2:(grid_max-1e-2)/(n-1):grid_max # equispaced grid
f(x) = x^alpha # defines the production function f(k)
tol = 1e-9

Out[1]: 1.0e-9

2.4 Analytic Solution

• If we choose u(x) = ln(x), the problem has a closed form solution.
• We can use this to check accuracy of our solution.

In [2]: ab = alpha * beta
c1 = (log(1 - ab) + log(ab) * ab / (1 - ab)) / (1 - beta)
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c2 = alpha / (1 - ab)
# optimal analytical values
v_star(k) = c1 .+ c2 .* log.(k)
k_star(k) = ab * k.^alpha
c_star(k) = (1-ab) * k.^alpha
ufun(x) = log.(x)

Out[2]: ufun (generic function with 1 method)

In [3]: kgrid[4]

Out[3]: 0.04026943624161074

In [3]: # Bellman Operator
# inputs
# `grid`: grid of values of state variable
# `v0`: current guess of value function

# output
# `v1`: next guess of value function
# `pol`: corresponding policy function

#takes a grid of state variables and computes the next iterate of the value function.
function bellman_operator(grid,v0)

v1 = zeros(n) # next guess
pol = zeros(Int,n) # policy function
w = zeros(n) # temporary vector

# loop over current states
# current capital
for (i,k) in enumerate(grid)

# loop over all possible kprime choices
for (iprime,kprime) in enumerate(grid)

if f(k) - kprime < 0 #check for negative consumption
w[iprime] = -Inf

else
w[iprime] = ufun(f(k) - kprime) + beta * v0[iprime]

end
end
# find maximal choice
v1[i], pol[i] = findmax(w) # stores Value und policy (index of optimal choice)

end
return (v1,pol) # return both value and policy function

end
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# VFI iterator
#
## input
# `n`: number of grid points
# output
# `v_next`: tuple with value and policy functions after `n` iterations.
function VFI()

v_init = zeros(n) # initial guess
for iter in 1:N_iter

v_next = bellman_operator(kgrid,v_init) # returns a tuple: (v1,pol)
# check convergence
if maximum(abs,v_init.-v_next[1]) < tol

verrors = maximum(abs,v_next[1].-v_star(kgrid))
perrors = maximum(abs,kgrid[v_next[2]].-k_star(kgrid))
println("Found solution after $iter iterations")
println("maximal value function error = $verrors")
println("maximal policy function error = $perrors")
return v_next

elseif iter==N_iter
warn("No solution found after $iter iterations")
return v_next

end
v_init = v_next[1] # update guess

end
end

# plot
using Plots
function plotVFI()

v = VFI()
p = Any[]

# value and policy functions
push!(p,plot(kgrid,v[1],

lab="V",
ylim=(-50,-30),legend=:bottomright),
plot(kgrid,kgrid[v[2]],
lab="policy",legend=:bottomright))

# errors of both
push!(p,plot(kgrid,v[1].-v_star(kgrid),

lab="V error",legend=:bottomright),
plot(kgrid,kgrid[v[2]].-k_star(kgrid),
lab="policy error",legend=:bottomright))

plot(p...,layout=grid(2,2) )

end
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plotVFI()

Info: Recompiling stale cache file /Users/florian.oswald/.julia/compiled/v1.1/Plots/ld3vC.ji for Plots [91a5bcdd-55d7-5caf-9e0b-520d859cae80]
@ Base loading.jl:1184

Found solution after 418 iterations
maximal value function error = 0.09528625737115703
maximal policy function error = 0.011773635481976297

Out[3]:
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2.4.1 Exercise 2: Discretizing only the state space (not control space)

• Same exercise, but now use a continuous solver for choice of k′.
• in other words, employ the following numerical approximation:

V(ki) = max
k′∈[0,k̄]

ln( f (ki)− k′) + βV(k′)

• To do this, you need to be able to evaluate V(k′) where k′ is potentially off the kgrid.
• use Interpolations.jl to linearly interpolate V.

– the relevant object is setup with function interpolate((grid,),v,Gridded(Linear()))
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• use Optim::optimize() to perform the maximization.

– you have to define an ojbective function for each ki
– do something like optimize(objective, lb,ub)

In [7]: kgrid

Out[7]: 0.01:0.013355704697986578:2.0

In [16]: using Interpolations
using Optim
function bellman_operator2(grid,v0)

v1 = zeros(n) # next guess
pol = zeros(n) # consumption policy function

Interp = interpolate((collect(grid),), v0, Gridded(Linear()) )
Interp = extrapolate(Interp,Interpolations.Flat())

# loop over current states
# of current capital
for (i,k) in enumerate(grid)

objective(c) = - (log.(c) + beta * Interp(f(k) - c))
# find max of ojbective between [0,k^alpha]
res = optimize(objective, 1e-6, f(k)) # Optim.jl
pol[i] = f(k) - res.minimizer # k'
v1[i] = -res.minimum

end
return (v1,pol) # return both value and policy function

end

function VFI2()
v_init = zeros(n) # initial guess
for iter in 1:N_iter

v_next = bellman_operator2(kgrid,v_init) # returns a tuple: (v1,pol)
# check convergence
if maximum(abs,v_init.-v_next[1]) < tol

verrors = maximum(abs,v_next[1].-v_star(kgrid))
perrors = maximum(abs,v_next[2].-k_star(kgrid))
println("continuous VFI:")
println("Found solution after $iter iterations")
println("maximal value function error = $verrors")
println("maximal policy function error = $perrors")
return v_next

elseif iter==N_iter
warn("No solution found after $iter iterations")
return v_next

end
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v_init = v_next[1] # update guess
end
return nothing

end

function plotVFI2()
v = VFI2()
p = Any[]

# value and policy functions
push!(p,plot(kgrid,v[1],

lab="V",
ylim=(-50,-30),legend=:bottomright),
plot(kgrid,v[2],
lab="policy",legend=:bottomright))

# errors of both
push!(p,plot(kgrid,v[1].-v_star(kgrid),

lab="V error",legend=:bottomright),
plot(kgrid,v[2].-k_star(kgrid),
lab="policy error",legend=:bottomright))

plot(p...,layout=grid(2,2) )

end

plotVFI2()

continuous VFI:
Found solution after 418 iterations
maximal value function error = 0.04828453368161689
maximal policy function error = 0.004602693711777683

Out[16]:
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2.5 Policy Function Iteration

• This is similar to VFI but we now guess successive policy functions
• The idea is to choose a new policy p∗ in each iteration so as to satisfy an optimality condition.

In our example, that would be the Euler Equation.
• We know that the solution to the above problem is a function c∗(k) such that

c∗(k) = arg max
z

u(z) + βV( f (k)− z) ∀k ∈ [0, ∞]

• We don’t directly solve the maximiation problem outlined above, but it’s first order condi-
tion:

u′(c∗(kt)) = βu′(c∗(kt+1)) f ′(kt+1)

= βu′[c∗( f (kt)− c∗(kt))] f ′( f (kt)− c∗(kt))

• In practice, we have to find the zeros of

g(kt) = u′(c∗(kt))− βu′[c∗( f (kt)− c∗(kt))] f ′( f (kt)− c∗(kt))

In [11]: # Your turn!
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using Roots
function policy_iter(grid,c0,u_prime,f_prime)

c1 = zeros(length(grid)) # next guess
pol_fun = extrapolate(interpolate((collect(grid),), c0, Gridded(Linear()) ) , Interpolations.Flat())

# loop over current states
# of current capital
for (i,k) in enumerate(grid)

objective(c) = u_prime(c) - beta * u_prime(pol_fun(f(k)-c)) * f_prime(f(k)-c)
c1[i] = fzero(objective, 1e-10, f(k)-1e-10)

end
return c1

end

uprime(x) = 1.0 ./ x
fprime(x) = alpha * x.^(alpha-1)

function PFI()
c_init = kgrid
for iter in 1:N_iter

c_next = policy_iter(kgrid,c_init,uprime,fprime)
# check convergence
if maximum(abs,c_init.-c_next) < tol

perrors = maximum(abs,c_next.-c_star(kgrid))
println("PFI:")
println("Found solution after $iter iterations")
println("max policy function error = $perrors")
return c_next

elseif iter==N_iter
warn("No solution found after $iter iterations")
return c_next

end
c_init = c_next # update guess

end
end
function plotPFI()

v = PFI()
plot(kgrid,[v v.-c_star(kgrid)],

lab=["policy" "error"],
legend=:bottomright,
layout = 2)

end
plotPFI()

PFI:
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Found solution after 39 iterations
max policy function error = 7.301895796647112e-5

Out[11]:
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3 Projection Methods

• Many applications require us to solve for an unknown function

– ODEs, PDEs
– Pricing functions in asset pricing models
– Consumption/Investment policy functions

• Projection methods find approximations to those functions that set an error function close to
zero.

3.1 Example: Growth, again

• We stick to our working example from above.
• We encountered the Euler Equation g for optimality.
• At the true consumption function c∗, g(k) = 0.
• We define the following function operator:
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0 = u′(c∗(k))− βu′[c∗( f (k)− c∗(k))] f ′( f (k)− c∗(k))
≡ (N (⌋∗))(k)

• The Equilibrium solves the operator equation

0 = N (c∗)

3.1.1 Projection Method example

1. create an approximation to c∗: find

c̄ ≡
n

∑
i=0

aiki

which nearly solves

N (c∗) = 0

2. Compute Euler equation error function:

g(k; a) = u′(c̄(k))− βu′[c̄( f (k)− c̄(k))] f ′( f (k)− c̄(k))

3. Choose a to make g(k; a) small in some sense

What’s small in some sense?

• Least-squares: minimize sum of squared errors

min
a

∫
g(k; a)2dk

• Galerkin: zero out weighted averages of Euler errors
• Collocation: zero out Euler equation errors at grid k ∈ {k1, . . . , kn}:

Pi(a) ≡ g(ki; a) = 0, i = 1, . . . , n

3.1.2 General Projection Method

1. Express solution in terms of unknown function

N (h) = 0

where h(x) is the equilibrium function at state x
2. Choose a space for appximation
3. Find h̄ which nearly solves

N (h̄) = 0
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3.1.3 Projection method exercise

• suppose we want to find effective supply of an oligopolistic firm in cournot competition.
• We want to know q = S(p), how much is supplied at each price p.
• This function is characterized as

p +
S(p)
D′(p)

− MC(S(p)) = 0, ∀p > 0

• Take D(p) = p−η and MC(q) = α
√

q + q2.
• Our task is to solve for S(p) in

p − S(p)pη+1

η
− α

√
S(p)− S(p)2 = 0, ∀p > 0

• No closed form solution. But collocation works!

TASK

1. solve for S(p) by collocation
2. Plot residual function
3. Plot resulting mS(p) together with market demand and m = 1, 10, 20 for market size.

In [5]: using CompEcon
using Plots
using NLsolve
function proj(n=25)

alpha = 1.0
eta = 1.5
a = 0.1
b = 3.0
basis = fundefn(:cheb,n,a,b)
p = funnode(basis)[1] # collocation points

c0 = ones(n)*0.3
function resid!(c::Vector,result::Vector,p,basis,alpha,eta)

# your turn!
q = funeval(c,basis,p)[1]
q2 = similar(q)
for i in eachindex(q2)

if q[i] < 0
q2[i] = -20.0

else
q2[i] = sqrt(q[i])

end
end
result[:] = p.+ q .*((-1/eta)*p.^(eta+1)) .- alpha*q2 .- q.^2
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end
f_closure(r::Vector,x::Vector) = resid!(x,r,p,basis,alpha,eta)
res = nlsolve(f_closure,c0)
println(res)

# plot residual function
x = collect(range(a, stop = b, length = 501))

y = similar(x)
resid!(res.zero,y,x,basis,alpha,eta);
y = funeval(res.zero,basis,x)[1]
pl = Any[]
push!(pl,plot(x,y,title="residual function"))

# plot supply functions at levels 1,10,20

# plot demand function
y = funeval(res.zero,basis,x)[1]
p2 = plot(y,x,label="supply 1")
plot!(10*y,x,label="supply 10")
plot!(20*y,x,label="supply 20")
d = x.^(-eta)
plot!(d,x,label="Demand")

push!(pl,p2)

plot(pl...,layout=2)

end
proj()

Results of Nonlinear Solver Algorithm
* Algorithm: Trust-region with dogleg and autoscaling
* Starting Point: [0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3]
* Zero: [0.248768, 0.0838916, -0.13965, 0.0447411, 0.00701804, -0.0135233, 0.00715223, -0.00229524, 0.000329096, 0.000224355, -0.000290968, 0.000210507, -0.000107876, 3.32945e-5, 4.04856e-6, -1.48411e-5, 1.28265e-5, -7.34842e-6, 2.74595e-6, -1.36709e-7, -8.28018e-7, 8.69542e-7, -5.79429e-7, 2.87391e-7, -1.02456e-7]
* Inf-norm of residuals: 0.000000
* Iterations: 9
* Convergence: true

* |x - x'| < 0.0e+00: false
* |f(x)| < 1.0e-08: true

* Function Calls (f): 8
* Jacobian Calls (df/dx): 7

Out[5]:

14



0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.1

0.2

0.3

0.4

residual function

y1

0 10 20 30

0.5

1.0

1.5

2.0

2.5

3.0

supply 1
supply 10
supply 20
Demand

4 Endogenous Grid Method (EGM)

• Fast, elegant and precise method to solve consumption/savings problems
• One continuous state variable
• One continuous control variable

V(Mt) = max
0<c<Mt

u(c) + βEVt+1(R(Mt − c) + yt+1)

• Here, Mt is cash in hand, all available resources at the start of period t

– For example, assets plus income.

• At = Mt − ct is end of period assets
• yt+1 is stochastic next period income.
• R is the gross return on savings, i.e. R = 1 + r.
• utility function can be of many forms, we only require twice differentiable and concave.

4.1 EGM after [@carroll2006method]

• [@carroll2006method] [1] introduced this method.
• The idea is as follows:

– Instead of using non-linear root finding for optimal c (see above)
– fix a grid of possible end-of-period asset levels At
– use structure of model to find implied beginning of period cash in hand.
– We use euler equation and envelope condition to connect Mt+1 with ct
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4.1.1 Recall Traditional Methods: VFI and Euler Equation

• Just to be clear, let us repeat what we did in the beginning of this lecture, using the Mt
notation.

V(Mt) = max
0<c<Mt

u(c) + βEVt+1(R(Mt − c) + yt+1)

Mt+1 = R(Mt − c) + yt+1

4.1.2 VFI

1. Define a grid over Mt.
2. In the final period, compute

VT(MT) = max
0<c<Mt

u(c)

3. In all preceding periods t, do

Vt(Mt) = max
0<ct<Mt

u(ct) + βEVt+1(R(Mt − ct) + yt+1)

4. where optimal consumption is

c∗t (Mt) = arg max
0<ct<Mt

u(ct) + βEVt+1(R(Mt − ct) + yt+1)

4.1.3 Euler Equation

• The first order condition of the Bellman Equation is

∂Vt

∂ct
= 0

u′(ct) = βE
[

∂Vt+1(Mt+1)

∂Mt+1

]
(FOC)

• By the Envelope Theorem, we have that

∂Vt

∂Mt
= βE

[
∂Vt+1(Mt+1)

∂Mt+1

]
by FOC

∂Vt

∂Mt
= u′(ct)

true in every period:
∂Vt+1

∂Mt+1
= u′(ct+1)

• Summing up, we get the Euler Equation:

u′(ct) = βE
[
u′(ct+1)R

]
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4.1.4 Euler Equation Algorithm

1. Fix grid over Mt
2. In the final period, compute

c∗T(MT) = arg max
0<cT<Mt

u(cT)

3. With optimal c∗t+1(Mt+1) in hand, backward recurse to find ct from

u′(ct) = βE
[
u′(c∗t+1(R(Mt − ct) + yt+1))R

]
4. Notice that if Mt is small, the euler equation does not hold.

• In fact, the euler equation would prescribe to borrow, i.e. set Mt < 0. This is ruled out.
• So, one needs to tweak this algorithm to check for this possibility

5. Homework.

4.2 The EGM Algorithm

Starts in period T with c∗T = MT. For all preceding periods:

1. Fix a grid of end-of-period assets At
2. Compute all possible next period cash-in-hand holdings Mt+1

Mt+1 = R ∗ At + yt+1

• for example, if there are n values in At and m values for yt+1, we have dim(Mt+1) =
(n, m)

3. Given that we know optimal policy in t + 1, use it to get consumption at each Mt+1

c∗t+1(Mt+1)

4. Invert the Euler Equation to get current consumption compliant with an expected level of
cash-on-hand, given At

ct = (u′)−1 (βE
[
u′(c∗t+1(Mt+1))R|At

])
5. Current period endogenous cash on hand just obeys the accounting relation

Mt = ct + At

In [2]: # minimal EGM implementation, go here: https://github.com/floswald/DCEGM.jl/blob/master/src/dc_algo.jl#L4
#ătry out:
# ] dev https://github.com/floswald/DCEGM.jl
using DCEGM
DCEGM.minimal_EGM(dplot = true);
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4.3 Discrete Choice EGM

• This is a method developed by Fedor Iskhakov, Thomas Jorgensen, John Rust and Bertel
Schjerning.

• Reference: [@iskhakovRust2014] [3]
• Suppose we have several discrete choices (like “work/retire”), combined with a continuous

choice in each case (like “how much to consume given work/retire”).
• Let d = 0 mean to retire.
• Write the problem of a worker as

Vt(Mt) = max [vt(Mt|dt = 0), vt(Mt|dt = 1)]
with

vt(Mt|dt = 0) = max
0<ct<Mt

u(ct) + βEWt+1(R(Mt − ct))

vt(Mt|dt = 1) = max
0<ct<Mt

u(ct)− 1 + βEVt+1(R(Mt − ct) + yt+1)

• The problem of a retiree is

Wt(Mt) = max
0<ct<Mt

u(ct) + βEWt+1(R(Mt − ct))

• Our task is to compute the optimal consumption functions c∗t (Mt|dt = 0), c∗t (Mt|dt = 1)
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[@iskhakovRust2014] figure 1

4.3.1 Problems with Discrete-Continuous Choice

• Even if all conditional value functions v are concave, the envelope over them, V, is in general
not.

• [@clausenenvelope] [2]show that there will be a kink point M̄ such that

vt(M̄|dt = 0) = vt(M̄|dt = 1)

– We call any such point a primary kink (because it refers to a discrete choice in the
current period)

• V is not differentiable at M̄.
• However, it can be shown that both left and right derivatives exist, with

V−(M̄) < V+(M̄)

• Given that the value of the derivative changes discretely at M̄t, the value function in t − 1
will exhibit a discontinuity as well:

– vt−1 depends on Vt.
– Tracing out the optimal choice of ct−1 implies next period cash on hand Mt, and as that

hits M̄t, the derivative jumps.
– The derivative of the value function determines optimal behaviour via the Euler Equa-

tion.
– We call a discontinuity in vt−1 arising from a kink in Vt a secondary kink.

• The kinks propagate backwards.

• [@iskhakovRust2014] [3] provide an analytic example where one can compute the actual
number of kinks in period 1 of T.

• Figure 1 in [@clausenenvelope]:
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4.3.2 Kinks

• Refer back to the work/retirement model from before.
• 6 period implementation of the DC-EGM method:

• Iskhakov @ cemmap 2015: Value functions in T-1

• Iskhakov @ cemmap 2015: Value functions in T-2

• Iskhakov @ cemmap 2015: Consumption function in T-2
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• Optimal consumption in 6 period model:

4.3.3 The Problem with Kinks

• Relying on fast methods that rely on first order conditions (like euler equation) will fail.
• There are multiple zeros in the Euler Equation, and a standard Euler Equation approach is

not guaranteed to find the right one.
• picture from Fedor Iskhakov’s master class at cemmap 2015:

4.3.4 DC-EGM Algorithm

1. Do the EGM step for each discrete choice d
2. Compute d-specific consumption and value functions
3. compare d-specific value functions to find optimal switch points
4. Build envelope over d-specific consumption functions with knowledge of which optimal d

applies where.

4.3.5 But EGM relies on the Euler Equation?!

• Yes.
• An important result in [@clausenenvelope] is that the Euler Equation is still the necessary

condition for optimal consumption

– Intuition: marginal utility differs greatly at ϵ + M̄.
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– No economic agent would ever locate at M̄.

• This is different from saying that a proceedure that tries to find the zeros of the Euler Equa-
tion would still work.

– this will pick the wrong solution some times.

• EGM finds all solutions.

– There is a proceedure to discard the “wrong ones”. Proof in [@iskhakovRust2014]

4.3.6 Adding Shocks

• This problem is hard to solve with standard methods.
• It is hard, because the only reliable method is VFI, and this is not feasible in large problems.
• Adding shocks to non-smooth problems is a widely used remedy.

– think of “convexifying” in game theoretic models
– (Add a lottery)
– Also used a lot in macro

• Adding shocks does indeed help in the current model.

– We add idiosyncratic taste shocks: Type 1 EV.
– Income uncertainty:
– In general, the more shocks, the more smoothing.

• The problem becomes

Vt(Mt) = max [vt(Mt|dt = 0) + σϵϵt(0), vt(Mt|dt = 1) + σϵϵt(1)]

vt(Mt|dt = 1) = max
0<ct<Mt

log(ct)− 1 + β
∫

EVt+1(R(Mt − ct) + yηt+1) f (dηt+1)

where the value for retirees stays the same.

4.3.7 Adding Shocks

4.3.8 Full DC-EGM

• Needs to discard false solutions.
• Criterion:

– grid in At is increasing
– Assuming concave utility function, the function

A(M|d) = M − c(M|d)
is monotone non-decreasing

– This means that, if you go through Ai, and find that

Mt(Aj) < Mt(Aj−1)

you know you entered a non-concave region

• The Algorithm goes through the upper envelope and prunes the inferior points M from the
endogenous grids.

• Precise details of Algorithm in paper.
• Julia implementation on floswald/ConsProb.jl
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[@iskhakovRust2014] figure 2
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[@iskhakovRust2014] figure 4

24



[@iskhakovRust2014] figure 4
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