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Es�ma�on of Dynamic Programming Models

• Now that we know how to solve them, how do we es�mate DPmodels?
• Examples

• Rust (1987)• Berry et al. (1995)
• There are many different methods. We will introduce just a few.Look at the survey Aguirregabiria and Mira (2010) for moredetails.
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Rust (1987)
• Each Bus comes in once a month for repair

• Harold Zurcher decides a�er observing mileage xt since lastengine replacment and some other unobserved variable εwhether to replace or not:
u(x + t, dt, θc, RC) =

{
−c(xt, θc) if dt = 0
−(RC + c(0, θc) if dt = 1

• He solves the DP
Vθ(xt) = sup

dt

E

{
∞

∑
j=t

βj−tu(xj, dj, θ) + εt(dt)|xt

}

• Parameters to be es�mated: θ = (θc, RC, θp)

• This formula�on results a�er making a set of simplifyingassump�ons.
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Rust (1987)

• To simplify, the odometer progress is assumed to be a randomprocess.
• that is, xt evolves stochas�cally.
• The assump�on is that xt+1 ∈ {s, s + 1, s + 2, s + 3} where s isthe state of xt, i.e. the bin it lies in.
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Model and Data
• Data: a �me series {xt, dt}T

t=1

• Likelihood func�on is
L(θ) = ΠT

t=2P(dt|xt, θc, RC)p(xt|xt−1, dt−1, θp)

where the condi�onal choice probabili�es are given by
P(dt|xt, θc, RC) =

exp[u(x, d, θc, RC) + βEVθ(x, d)]
∑d′∈{0,1} exp[u(x, d′, θc, RC) + βEVθ(x′, d′)]

and, importantly, EV is the solu�on to

EVθ(x, d) =Tθ(EVθ)(x, d)

≡
∫ ∞

x′=0
log

(
∑

d′∈0,1
exp[u(x, d′, θc, RC) + βEVθ(x′, d′)]

)
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Nested Fixed Point Algorithm (NXFP)

1 Outer Loop: Solve the Likelihood func�on
max
θ>0
L(θ) = ΠT

t=2P(dt|xt, θc, RC)p(xt|xt−1, dt−1, θp)

2 Inner Loop: Compute Expected value func�on EVθ for a givenguess θ
EVθ = Tθ(EVθ)(x, d)

8 / 32



Poten�al Issues with NXFP

• We need a stopping rule for the likelihood func�on.
• We need one for the inner loop as well.
• Errors will propagate from the inner loop to the outer loop.
• Given that the search direc�on on L(θ) depends on it’sgradient, errors will ma�er a lot.
• the tolerance on the inner loop needs to be �ght, like 1.0e−13
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MPEC
Mathema�cal Programming with Equality constraints

• We can turn the problem around.
• Instead of asking Whats the EV compa�ble with my guess θ?, wecould directly a�ack the likelihood:
• Maximize L(θ) subject to the constraint, that behavior is
op�mal according to the model.

• in other words, augment the likelihood:

L(θ, EV; X) = ΠT
t=2P(dt|xt, θc, RC)p(xt|xt−1, dt−1, θp)

P(dt|xt, θc, RC) =
exp[u(x, d, θc, RC) + βEV(x, d)]

∑d′∈{0,1} exp[u(x, d′, θc, RC) + βEV(x′, d′)]
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Different Op�miza�on problems

NXFP solves the unconstrained op�miza�on problem:
max

θ
L(θ, EVθ)

MPEC solves the constrained op�miza�on problem:
max
θ,EV
L(θ, EV; X)

subject toEV = T(EV, θ)
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Su and Judd (2012)
• Su and Judd (2012) perform MPEC on the bus model.
• the key difference to note is that EV now becomes a choicevariable.
• In fact, the op�mizer will be fed a vector

x = [RC, θc, EV]

where EV is an approxima�on to EV. In Su and Judd (2012), thisis just going to be
EV ≡ [EV(x1), EV(x2), . . . , EV(xn)]

i.e. the approxima�on needs to hold pointwise.
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Su and Judd (2012)
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Performance
• In general, NXFP is a computa�onally expensive opera�on.

• you have to solve a DP for many many many �mes in order tofind your θ.
• However, there is much to qualify about this statement. The
details ma�er here.

• For example, Su and Judd (2012) are very cri�cal about NXFP inthe Bus Model. They compare it to the performance of MPEC.
• But Iskhakov et al. (2016) redo the exercise with Rust’s originalmethod to solve EV and show that NXFP is s�ll a very strongcontender in this example.

14 / 32



Rust Bus Replacement

Berry, Levinsohn and Pakes (BLP) as MPEC
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BLP a�er Dubé et al. (2012)
• Berry et al. (1995) is a model for automobile sales.
• It has become a very widely applied model and es�ma�ontechnique, short: BLP.
• The original paper performs demand es�ma�on with a largenumber of differen�ated products:

• characteris�cs approach• useful when only aggregate data are available• allows for flexible subs���on pa�erns• controls for price endogeneity
• The computa�onal algorithm derives moment condi�ons from anon-linear model
• The method is also known as Random Coefficients Logit
Demand
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Random Coefficients Logit Demand
• The U�lity of i from purchasing product j in market t is

uijt = β0
i + xjtβ

x
i − β

p
i pjt + ξjt + εijt (1)

• with product characteris�cs xjt, pjt, ξjt

• xjt, pjt: ovserved with cov(pjt, ξjt) 6= 0• ξjt: unovserved to econometrician.
• βi ≡ [β0

i , βx
i , β

p
i ]: random coefficients or individual specifictastes to be es�mated.

• We posit a distribu�on: βi ∼ Fβ(β, θ)

• Goal of BLP : es�mate θ in the above parametric distribu�on.• errors are assumed type 1 EV• Consumer picks product j if uijt ≥ uij′t

17 / 32



The Model: Market Shares

• The model predicts market shares :
sj(xt, pt, xit; θ) =

∫
{βi,εi|uijt≥uij′t,∀j′ 6=j}

dFβ(β, θ)dFε(ε) (2)

• with type 1 EV shocks ε, there is an analy�cal solu�on to one ofthose integrals:
sj(xt, pt, xit; θ) =

∫
β

exp(β0 + xjtβ
x − βppjt + ξjt)

1 + ∑J
k=1 exp(β0 + xktβx − βppkt + ξkt)

dFβ(β, θ)

(3)
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The Model: Market Shares

They use numerical integra�on:
ŝj(xt, pt, xit; θ) =

1
ns

ns

∑
r=1

exp(β0r + xjtβ
xr − βprpjt + ξjt)

1 + ∑J
k=1 exp(β0r + xktβxr − βprpkt + ξkt)

dFβ(β, θ)

(4)to arrive at the market share (moment) condi�ons:
ŝj(xt, pt, ξit; θ) = Sjt, ∀j ∈ J, t ∈ T (5)

where Sjt is data.
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GMM Es�mator
• If firms can observe demand shocks ξt, they will set pricesaccordingly.
• There will be correla�on between pt and ξt⇒ Endogeneity Bias!
• BLP solve endogeneity of prices with a vector zjt of IVs, whichare excluded from the demand equa�on (1)
• they propose a moment condi�on E[ξjt|zjt, xjt] = 0

• zjt: e.g. product-specific cost shi�ers, or K non-pricecharacteris�cs in xj,t (assumed mean independent of ξt)
• We o�en form E[ξjt · h(zjt, xjt)] = 0 for some known func�on h.
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Ge�ng moment equa�ons
• To get the sample analog of E[ξjt|zjt, xjt] = 0, we need to find

ξjt corresponding to θ

• System (5) defines a mapping ξjt and St

• Berry proved that s has an inverse, hence any observed St canbe explained by a unique ξjt(θ) = s−1(St, θ)

• Sample analog of E[ξjt|zjt, xjt] = 0 is thus
g(θ) =

1
TJ ∑

t,j
ξjt(θ)

′zjt
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GMM Es�mator

• Data are {(xjt, pjt, Sjt, zjt)j∈J,t∈T}

• We want to minimize the GMM objec�ve
Q(θ) = g(θ)′Wg(θ)

• There is no analy�c form for ξjt(θ), see previous slide
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Berry et al. (1995) Es�ma�on Algorithm - NFXP
• Outer Loop: minθ g(θ)′Wg(θ)

1 Guess vector θ to get g(θ) = 1
TJ ∑t ∑j ξjt(θ)

′zjt

2 Stop whenever ||∇θ(g(θ)′Wg(θ))|| ≤ εout

• Inner loop: compute ξjt(θ) given θ

1 Solve system sj(xt, pt, xit; θ) = S·t by Berry constrac�on:
ξh+1

t = ξh
t + log St − log sj(xt, pt, ξh

t ; θ)

2 Stop whenever ||ξh+1
·t − ξh

·t|| ≤ εin3 Call resul�ng demand shock ξjt(θ, εin)
• Clearly, need to choose both stopping rules for inner and outerloop.
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Kni�el and Metaxoglou (2014)
• They perform an extensive inves�ga�on into BLP on two widelyused datasets: cars and cereals.
• They use 10 free solvers and 50 star�ng points for each.
• Find: convergence occurs at several local extrema, saddles, andin regions where the FOC is not sa�sfied.
• Resul�ng parameter es�mates of economic variables (marketshares, price elas�citeis) exhibit huge varia�on depending onsolver/star�ng point.
• All in all, they found 400 local solu�ons.
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Dubé et al. (2012)’s concerns

1 Too much computa�on
• need to know ξ(θ) only at true θ.• NFXP solves for ξ(θ) at each stage.

2 Stopping criteria
• inner loop can be slow to converge• it’s temp�ng to loosen εin (o�en see εin = 1e−6 or higher!)• outer loop may not converge with loose inner criterion

3 Inner loop error propagates to outer loop.

25 / 32



Errors from loose stopping

θ∗ = arg max
θ

Q(ξ(θ, 0))

θ̂ = arg max
θ

Q(ξ(θ, εin))

• Dubé et al. (2012) derive bounds on the order of es�ma�n erroras a func�on of εin
• Consider Kni�el and Metaxoglou (2014) for numericalexperiments.
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BLP as an MPEC

• Dubé et al. (2012) cast this as an MPEC:
min

θ,ξ
ξTZWZTξ

subject to s(ξ, θ) = S

• Advantages:
1 No need to set up 2 tolerances
2 no inner errors propagated
3 easy to code in AMPL
4 fewer itera�ons, given that AMPL provides analy�cgradients/hessian
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Exploring Sparsity in BLP
• The way this is formulated now, the Hessian of objec�ve isdense. :-(
• They add an addi�onal variable r and associated constraint

ZTξ = r

min
θ,ξ,r

rTWr

subject to s(ξ, θ) = S

and ZTξ = r

• advantages:
1 Hessian of objec�ve func�on is now sparse
2 Very big saving in memory requirements.

28 / 32



Convergence and Loose vs Tight
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Speed
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