
SciencesPo Computational Economics
Spring 2017

Florian Oswald

January 17, 2019

1 MPEC for Starters

Think of a consumer who decides how much of a certain good to consume, given prices. The
consumer’s behaviour is dictated by a preference parameter β, which is unobserved. We only
observe data on choices, i.e. how much was consumed, at which price of the good. We will specify
an economic model, and estimate the value of the preference parameter.

The utility function is given generically as

u(c; β)

and there is a structural relationship dictated by theory between demand for consumption and
price of the consumption good: demand will be such that the marginal utility of consumption is
equal to price, in other words

uc(c; β) = p (FOC) (1)

Our aim here is to show how one can estimate the parameter vector β quite easily with MPEC.
This means that we set up an estimation procedure that is a constrainted maximization problem.
Our estimate of β will be a parameter vector that satisfies FOC and at the same time minimizes
some criterion function.

In order to faciliate estimation, we assume that consumption is measured with error. In that
case we don’t observe actual consumption, but another variable demand, i.e. q = c + ϵ, where
ϵ follows some distribution function. Suppose we have N measurements of price-demand pairs
{qi, pi}N

i=1. For the sake of this example, we assume a very simple form of the utility function;
bear in mind, however, that the actual strength of MPEC is that one can dispense with the need
to find convenient closed form solutions, just so that the model can be solved. Our utility will be
quadratic, as in

u(c; β) = c − βc2

and marginal utility is
uc = 1 − 2βc

Given our assumption about measurement error, we substitute out c

uc = 1 − 2β(q − ϵ)

The economic model prescribes that

1

p = uc

or, in other words

pi = 1 − 2β(qi − ϵi)

Our estimation will be based on minimizing the sum of squared errors, ϵ subject to complying
with constraint FOC. We solve the following problem:

min
{ϵ}N

i=1,β
∑N

i=1 ϵ2
i

s.t. uc(qi − ϵi; β) = pi

We notice right away that the choice of β does not directly influence the value of the objective
function, therefore both the objective and it’s gradient will be independent of β. However, every
choice of β needs to go together with a corresponding choice of ϵ’s which need to be chosen s.t.
the constraint is satisfied. This is not a general feature of MPEC, as in many cases the parameters
of interest would appear in the objective. Also, in a more elaborate model, we would probably
have some data that we would want to model to come close to; In that case our objective function
would be augmented by the likelihood function of that data together with our model, or we could
have a moment criterion etc.

1.0.1 Task 1: write down the Lagrangian of this problem

L =
N

∑
i=1

ϵ2
i − λT [g(q, ϵ, β)]

where

λ =

 λ1
...

λN

 , ϵ =

 ϵ1
...

ϵN

q =

 q1
...

qN

 , p =

 p1
...

pN

1.0.2 Task 2: What is the length of the choice vector?

• What is the length of the choice vector x here? what are it’s elements?

x = [{ϵ}N
i=1 , β]

2

1.0.3 Task 3: write down the constraint function and it’s gradient wrt to x

• Denote the constraint function g as the collection of all constraints (there are N constraints).
Write down a typical element gi, i.e. what does the i-th constraint look like?

gi ≡ 1 − 2β (qi − ϵi)− pi = 0

• What does the gradient of g look like? It’s a matrix.

Here as a m by n i.e. number of constraints by number of choice vars:

▽g =

∂g1
∂ϵ1

∂g1
∂ϵ2

. . . ∂g1
∂ϵN

∂g1
∂β

∂g2
∂ϵ1

∂g2
∂ϵ2

. . . ∂g2
∂β

...
. . .

...
∂gm
∂ϵ1

. . . ∂gm
∂β

Here as a n by m i.e. number of choice vars by number of constraints:

▽g =

∂g1
∂ϵ1

∂g2
∂ϵ1

. . . ∂gm
∂ϵ1

∂g1
∂ϵ2

∂g2
∂ϵ2

. . . ∂gm
∂ϵ2

...
. . .

∂g1
∂ϵN

∂g2
∂ϵN

. . . ∂gm
∂ϵN

∂g1
∂β

∂g2
∂β . . . ∂gm

∂β

1.0.4 Task 4: Implement

Take

• N=100
• β = 0.1 as true value
• setup this MPEC problem in NLopt!

In []: using Distributions
srand(12345)
normal = Normal(0,0.01)
N = 100
price = collect(linspace(0.05,0.95,N))
beta0 = 0.1
demand0 = (1.0-price) / (2*beta0)
demand = demand0 - rand(normal,N)

3

